首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The occurrence of intracellular fibrillar material (frequently banded) has been studied in normal costal and tracheal chondrocytes of rats at various ages ranging from 1 to 90 days. The study methods have included digestion with collagenase, electron histochemical techniques and routine electron microscopy. Banded fibrillar material has been observed intracellularly in vesicles or in electron-dense bodies in perichondrial and subperichondrial chondrocytes from rats of all ages. These fibrils and extracellular collagen fibrils are partially and equally degradable by collagenase, they are positive after staining with phosphotungstic acid or with silver nitrate methenamine, and their lucency corresponds with that of collagen when they are stained only with lead citrate. They have not been observed in intracellular clefts. They, therefore, seem to be formed intracellularly and to be exocytosed subsequently. Large vesicles and electron-dense bodies seem to be derived from Golgi saccules. A mechanism whereby banded intracellular fibrils could be formed from tropocollagen molecules is postulated. The frequency of occurrence and the diameter of intracellular fibrils seems to increase with increasing age.  相似文献   

2.
The action patterns have been studied of a purified, intracellular dextranase and three intracellular alpha-D-glucosidases from Pseudomonas UQM733 on pure isomalto-oligosaccharides. The glucosidases have optimal activity on isomaltotetraose and are therefore classified as oligoglucanases. They have been used to determine the structure of two branched isomalto-oligosaccharides obtained by enzymic degradation of dextran.  相似文献   

3.
Bacteria of the Chlamydiales order are very successful intracellular organisms that grow in human and animal cells, and even in amoebae. They fulfill several essential functions to enter their host cells, establish an intracellular environment favorable for their multiplication and exit the host cell. They multiply in a unique organelle called the inclusion, which is isolated from the endocytic but not the exocytic pathway. A combination of host cell factors and of proteins secreted by the bacteria, from within the inclusion, contribute to the establishment and development of this inclusion. Here we review recent data on the entry mechanisms and maturation of the inclusion.  相似文献   

4.
Channels selective for potassium or chloride ions are present in all intracellular membranes such as mitochondrial membranes, sarcoplasmic/endoplasmic reticulum, nuclear membrane and chromaffin granule membranes. They probably play an important role in events such as acidification of intracellular compartments and regulation of organelle volume. Additionally, intracellular ion channels are targets for pharmacologically active compounds, e.g. mitochondrial potassium channels interact with potassium channel openers such as diazoxide. This review describes current observations concerning the properties and functional roles of intracellular potassium and chloride channels.  相似文献   

5.
The obligate intracellular pathogens Chlamydiaceae are the agents of several human diseases. They cannot be genetically manipulated and they survive and replicate in a unique intracellular organelle called the inclusion. In the past five years, publications of the genome sequences of several strains have opened new areas of research. Some of these new advances are presented here.  相似文献   

6.
Bacteria of the genus Legionella are intracellular parasites and major human pathogens. They bind to surface receptors, penetrate eukaryotic cells and initiate complex disorders during phagocytosis. These disorders include inhibition of oxidative burst, a decrease in phagosome acidification, the blocking of phagosome maturation and changes in organelle trafficking. As a result, the microorganisms prevent the bactericidal activity of the phagocyte and transform the phagosome into a niche for their replication. Biological, biochemical and molecular-genetic approaches have been used to identify a panel of bacterial products that may be involved in Legionella virulence. They include cytotoxins, several enzymes and a set of genes thought to encode proteins of the export machinery. However, despite distinct progress in research, the molecular mechanisms underlying intracellular parasitism in Legionella are unclear.  相似文献   

7.
陈杨慧  黎源  王蓓 《微生物学报》2023,63(8):2994-3008
胞内致病菌,指能够侵入宿主细胞且在宿主细胞内存活并繁殖的病原菌。其入侵宿主细胞的过程主要涉及细菌黏附宿主细胞、侵袭、细菌在细胞内存活以及引起宿主细胞损伤等。先前的研究表明大多数胞内致病菌是通过吞噬细胞被动地摄取,而随着分子生物学和免疫学的发展,越来越多的胞内致病菌被证明能主动入侵到宿主细胞体内,并进化出各种调控宿主细胞信号通路的方式。本文讨论了胞内致病菌在入侵宿主细胞时各阶段的共同的分子机制以及常见的胞内致病菌所采取的入侵策略,并对近年来国内外主要相关研究进展做一总结。  相似文献   

8.
Harpreet Singh 《FEBS letters》2010,584(10):2112-10897
Plasma membrane channels have been extensively studied, and their physiological roles are well established. In contrast, relatively little information is available about intracellular ion channels. Chloride Intracellular Channel (CLICs) proteins are a novel class of putative intracellular ion channels. They are widely expressed in different intracellular compartments, and possess distinct properties such as the presence of a single transmembrane domain, and a dimorphic existence as either a soluble or membranous form. How these soluble proteins unfold, target to, and auto-insert into the intracellular membranes to form functional integral ion channels is a complex biological question. Recent information from studies of their crystal structures, biophysical characterization and functional roles has provoked interest in these unusual channels.  相似文献   

9.
Several thermophilic Bacillus Strains were isolated from natural as well as artificial habitats. They grow optimally on a carbohydrate-containing medium at a temperature of 65 to 68°C and a pH value of 6 to 7 under aerobic conditions. They utilize glucose, sucrose and sodium acetate as carbon and energy sources. They can be differentiated by acid formation and composition of intracellular fatty acid fraction as well as growth on xylose, lactose, starch, cellobiose, ribose and galactose.  相似文献   

10.
Intracellular copper routing: the role of copper chaperones   总被引:9,自引:0,他引:9  
Copper is required by all living systems. Cells have a variety of mechanisms to deal with this essential, yet toxic trace element. A recently discovered facet of homeostatic mechanisms is the protein-mediated, intracellular delivery of copper to target proteins. This routing is accomplished by a novel class of proteins, the 'copper chaperones'. They are a family of conserved proteins present in prokaryotes and eukaryotes, which suggests that copper chaperones are used throughout nature for intracellular copper routing.  相似文献   

11.
We describe a new approach to probe the molecular biology of the living cell that uses small colloidal gold particles coupled to specific ligands. They are visualized in cells by bright-field, video enhanced contrast microscopy. We describe the basic aspects of the technique and provide examples of applications to intracellular motility, cell membrane dynamics, receptor translocation, internalization, and intracellular routing. We also provide examples of the use of this approach in immunospecific labelling of cells and tissue sections.  相似文献   

12.
Macrophages are crucial in immunity to infection. They possess potent antimicrobial function, and efficiently process and present peptide antigens for T-cell activation. Despite this, the intracellular protozoan parasites Toxoplasma gondii, Trypanosoma cruzi and Leishmania spp. target macrophages for infection. Each has adopted unique strategies to subvert macrophage antimicrobial functions. The parasites sabotage killing activities through sophisticated manipulation of intracellular macrophage signaling pathways. These subversive activities are probably dictated by the need to evade microbicidal effector function, as well as to avoid proinflammatory pathology that can destabilize the host-parasite interaction. The molecular details of how intracellular protozoans manipulate macrophage signal transduction pathways for their own ends are beginning to emerge.  相似文献   

13.
Hosts are frequently infected with more than one parasite or pathogen at any one time, but little is known as to how they respond to multiple immune challenges compared to those involving single infections. We investigated the proteome of Aedes aegypti larvae following infection with either Edhazardia aedis or Vavraia culicis, and coinfections involving both. They are both obligate intracellular parasites belonging to the phylum microsporidia and infect natural populations of Ae. aegypti. The results found some proteins only showing modified abundance in response to infections involving E. aedis, while others were only differentially abundant when infections involved V. culicis. Some proteins only responded with modified abundance to the coinfection condition, while others were differentially abundant in response to all three types of infection. As time since infection increased, the response to each of the single parasite infections diverged, while the response to the E. aedis and coinfection treatments converged. Some of the proteins differentially abundant in response to infection were identified. They included two vacuolar ATPases, proteins known to have a role in determining the infection success of intracellular parasites. This result suggests microsporidia could influence the infection success of other intracellular pathogens infecting vector species of mosquito, including viruses, Plasmodium and Wolbachia.  相似文献   

14.
Microsporidia are obligate intracellular parasites that emerged as opportunistic pathogens since the onset of the AIDS pandemic. They are capable of disseminating through the body using macrophages as vehicles. We incubated human macrophages with spores of all three Encephalitozoon spp. as well as with Vittaforma corneae, and the number of intracellular spores per cell was determined by fluorescence microscopy. Cell culture supernatants were collected and the content of TNF-alpha, INF-gamma, IL-10, and of nitric oxide was determined. Microsporidian spores did not induce a nitric oxide response in macrophages and there was a negative correlation between the number of intracellular spores and the amount of nitric oxide. TNF-alpha, INF-gamma, and IL-10 increased after simulation of macrophages with microsporidian spores but for TNF-alpha and INF-gamma no clear correlation of cytokine levels with the number of intracellular spores could be observed. A modulation of the nitric oxide response by intracellular microsporidia may contribute to the survival of microsporidia within the macrophage by a mechanism yet unknown.  相似文献   

15.
Dendritic cells (DC) are the most potent antigen-presenting cells, and form a link between the innate and adaptive immune system. They sample the periphery of the body for antigens and present them to T cells to elicit a proper immune response. It has been shown that dendritic cells phagocytose mycobacteria, but there have been conflicting reports as to whether the bacteria are capable of intracellular replication in DCs. Mycobacterium avium is a facultative intracellular bacterium, part of the Mycobacterium avium complex (MAC) of mycobacteria and are commonly seen as opportunistic pathogens in patients infected by Human immunodeficiency virus type 1 (HIV-1). To clarify the issue of whether DCs are capable of controlling the intracellular growth of M. avium and whether this control is lost upon HIV-1 exposure, we investigated the intracellular replication of M. avium in monocyte-derived dendritic cells and compared it to bacterial growth in dendritic cultures exposed to HIV-1 for 24 h. Our results show that exposure of DCs to HIV-1 promotes or facilitates the intracellular growth of M. avium.  相似文献   

16.
Channels selective for potassium or chloride ions are present in membranes of intracellular organelles such as sarcoplasmic (endoplasmic) reticulum, mitochondria, nucleus, synaptic vesicles, and chromaffin, and zymogen granules. They probably play an important role in cellular events such as compensation of electrical charges during transport of Ca2+, ΔpH formation in mitochondria or V-ATPase containing membrane granules, and regulation of volume changes, due to potassium and chloride transport into intracellular organelles. Intracellular potassium and chloride channels could also be the target for pharmacologically active compounds. This mini-review describes the basic properties, pharmacology, and current hypotheses concerning the functional role of intracellular potassium and chloride channels.  相似文献   

17.
Different intracellular pools participate in generating Ca(2+) signals in neuronal cells and in shaping their spatio-temporal patterns. They include the endoplasmic reticulum (endowed with different classes of Ca(2+) channels, with distinct functional properties and highly defined expression patterns in the brain), the Golgi apparatus, and the mitochondria. The release of Ca(2+) from intracellular pools plays an important role in controlling processes such as neurite outgrowth, synaptic plasticity, secretion and neurodegeneration.  相似文献   

18.
Abstract Almost all aphids harbor prokaryotic intracellular symbionts in the cytoplasm of mycetocytes, huge cells in the abdomen specialized for this purpose. The aphids and their intracellular symbionts are in close mutualistic association and unable to live without their partner. The intracellular symbionts of various aphids are of a single origin; they are descendants of a prokaryote that was acquired by the common ancestor of the present aphids. The date of establishment of the symbiotic association is estimated to be 160–280 million years ago using 16S rRNA molecular clock calibrated by aphid fossils. Molecular phylogeny indicates that the intracellular symbiont belongs to a group of gut bacteria, suggesting the possibility that it was derived from a gut microbe of aphids. While the in-tracellular symbionts are universal and highly conserved amongst aphids, other types of symbiotic microorganisms are also present. In various aphids, bacterial “secondary” intracellular symbionts are found in addition to the standard symbionts. They are thought to be acquired many times in various lineages independently. Some Cerataphidini aphids do not have intracellular symbiotic system but harbor yeast-like extracellular symbionts in the hemocoel. In a lineage of this group, symbiont replacement from intracellular prokaryote to extracellular yeast must have occurred. The diversity of the endosymbiotic system of aphids illuminates a dynamic aspect of endosymbiotic evolution.  相似文献   

19.
Extracellular nucleotides are danger signals involved in recognition and control of intracellular pathogens. They are an important component of the innate immune response against intracellular pathogens, inducing the recruitment of inflammatory cells, stimulating secretion of cytokines, and producing inflammatory mediators such as reactive oxygen species (ROS) and nitric oxide (NO). In the case of extracellular ATP, some of the immune responses are mediated through activation of the NLRP3 inflammasome and secretion of the cytokine, interleukin-1β (IL-1β), through a mechanism dependent on ligation of the P2X7 receptor. Here we review the role of extracellular nucleotides as sensors of intracellular bacteria and protozoan parasites, and discuss how these pathogens manipulate purinergic signaling to diminish the immune response against infection.  相似文献   

20.
Heat shock proteins are ubiquitously expressed intracellular proteins and act as molecular chaperones in processes like protein folding and protein trafficking between different intracellular compartments. They are induced during stress conditions like oxidative stress, nutritional deficiencies and radiation. They are released into extracellular compartment during necrosis. However, recent research findings highlights that, they are not solely present in cytoplasm, but also released into extracellular compartment during normal conditions and even in the absence of necrosis. When present in extracellular compartment, they have been shown to perform various functions like antigen presentation, intercellular signaling and induction of pro-inflammatory cytokines. Heat shock proteins represents as dominant microbial antigens during infection. The phylogenetic similarity between prokaryotic and eukaryotic heat shock proteins has led to proposition that, microbial heat shock proteins can induce self reactivity to host heat shock proteins and result in autoimmune diseases. The self-reactivity of heat shock proteins protects host against disease by controlling induction and release of pro-inflammatory cytokines. However, antibodies to self heat shock proteins haven been implicated in pathogenesis of autoimmune diseases like arthritis and atherosclerosis. Some heat shock proteins are potent inducers of innate and adaptive immunity. They activate dendritic cells and natural killer cells through toll-like receptors, CD14 and CD91. They play an important role in MHC-antigen processing and presentation. These immune effector functions of heat shock proteins are being exploited them as therapeutic agents as well as therapeutic targets for various infectious diseases and cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号