首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of the distal pocket conformation on the structure and vibrations of the heme-CO bond in carbonmonoxy myoglobin (MbCO) is investigated by means of hybrid QM/MM calculations based on density functional theory combined with a classical force field. It is shown that the heme-CO structure (QM treated) is quite rigid and not influenced by the distal pocket conformation (MM treated). This excludes any relation between FeCO distortions and the different CO absorptions observed in the infrared spectra of MbCO (A states). In contrast, both the CO stretch frequency and the strength of the CO...His64 interaction are very dependent on the orientation and tautomerization state of His64. Our calculations indicate that the CO...N(epsilon) type of approach does not contribute to the A states, whereas the CO...H-N(epsilon) interaction is the origin of the A(1) and A(3) states, the His64 residue being protonated at N(epsilon). The strength of the CO...His64 interaction is quantified, in comparison with the analogous O(2)...His64 interaction and with the observed changes in the CO stretch frequency. Additional aspects of the CO...His64 interaction and its biological implications are discussed.  相似文献   

2.
QM and QM/MM energy calculations have been carried out on an atomic resolution structure of liganded triosephosphate isomerase (TIM) that has an active site proline (Pro168) in a planar conformation. The origin of the planarity of this proline has been identified. Steric interactions between the atoms of the proline ring and a tyrosine ring (Tyr166) on one side of the proline prevent the ring from adopting the up pucker (chi1 is approximately -30 degrees), while the side chain of a nearby alanine (Ala171) forbids the down pucker (chi1 is approximately +30 degrees). To obtain a proline conformation that is in agreement with the experimentally observed planar state, a quantum system of sufficient size is required and should at least include the nearby side chains of Tyr166, Ala171, and Glu129 to provide enough stabilization. It is argued that the current force fields for structure optimization do not describe strained protein fragments correctly. The proline is part of a catalytic loop that closes upon ligand binding. Comparison of the proline conformation in different TIM X-ray structures, indicates that in the closed conformation of TIM the proline is planar or nearly planar, while in the open conformation it is down puckered. This suggests that the planarity possibly plays a role in the overall catalytic cycle of TIM, presumable acting as a reservoir of energy that becomes available upon loop opening.  相似文献   

3.
Due to the higher computational cost relative to pure molecular mechanical (MM) simulations, hybrid quantum mechanical/molecular mechanical (QM/MM) free energy simulations particularly require a careful consideration of balancing computational cost and accuracy. Here, we review several recent developments in free energy methods most relevant to QM/MM simulations and discuss several topics motivated by these developments using simple but informative examples that involve processes in water. For chemical reactions, we highlight the value of invoking enhanced sampling technique (e.g. replica-exchange) in umbrella sampling calculations and the value of including collective environmental variables (e.g. hydration level) in metadynamics simulations; we also illustrate the sensitivity of string calculations, especially free energy along the path, to various parameters in the computation. Alchemical free energy simulations with a specific thermodynamic cycle are used to probe the effect of including the first solvation shell into the QM region when computing solvation free energies. For cases where high-level QM/MM potential functions are needed, we analyse two different approaches: the QM/MM–MFEP method of Yang and co-workers and perturbative correction to low-level QM/MM free energy results. For the examples analysed here, both approaches seem productive although care needs to be exercised when analysing the perturbative corrections.  相似文献   

4.
Costa MT 《Carbohydrate research》2005,340(13):2185-2194
The QM/MM molecular dynamics methodology was applied to the study of the two main D-fructose tautomers present in aqueous solution, beta-D-fructofuranose and beta-D-fructopyranose. The solute was treated at the AM1 semi-empirical level, and for the solvent water molecules we used the TIP3P potential. We analyzed the structure of the water molecules around the hydroxyl groups to explain the differences in sweet taste between the two tautomers.  相似文献   

5.
The combination of Quantum Mechanics (QM) and Molecular Mechanics (MM) methods has become an alternative tool for many applications for which pure QM and MM are not suitable. The QM/MM method has been used for different types of problems, for example: structural biology, surface phenomena, and liquid phase. In this paper, we have used these methods for antibiotics and then we compared results. The calculations were done by the full ab initio method (HF/3-21G) and the (HF/STO-3G) and QM/MM (ONIOM) method with HF (3-21G)/AM1/UFF and HF (STO-3G)/AM1/UFF. We found the geometry obtained by the QM/MM method to be very accurate, and we can use this rapid method in place of time consuming ab initio methods for large molecules. Comparison of energy values in the QM/MM and QM methods is given. In the present work, we compare chemical shifts and conclude that the QM/MM method is a perturbed full QM method. The work has been done on penicillin, streptomycin, benzyl penicillin, neomycin, kanamycin, gentamicin, and amoxicillin.  相似文献   

6.
The energy storage and the molecular rearrangements due to the primary photochemical event in rhodopsin are investigated by using quantum mechanics/molecular mechanics hybrid methods in conjunction with high-resolution structural data of bovine visual rhodopsin. The analysis of the reactant and product molecular structures reveals the energy storage mechanism as determined by the detailed molecular rearrangements of the retinyl chromophore, including rotation of the (C11-C12) dihedral angle from -11 degrees in the 11-cis isomer to -161 degrees in the all-trans product, where the preferential sense of rotation is determined by the steric interactions between Ala-117 and the polyene chain at the C13 position, torsion of the polyene chain due to steric constraints in the binding pocket, and stretching of the salt bridge between the protonated Schiff base and the Glu-113 counterion by reorientation of the polarized bonds that localize the net positive charge at the Schiff-base linkage. The energy storage, computed at the ONIOM electronic-embedding approach (B3LYP/6-31G*:AMBER) level of theory and the S0-->S1 electronic-excitation energies for the dark and product states, obtained at the ONIOM electronic-embedding approach (TD-B3LYP/6-31G*//B3LYP/6-31G*:AMBER) level of theory, are in very good agreement with experimental data. These results are particularly relevant to the development of a first-principles understanding of the structure-function relations in prototypical G-protein-coupled receptors.  相似文献   

7.
Hydrogen bonding and polar interactions play a key role in identification of protein-inhibitor binding specificity. Quantum mechanics/molecular mechanics molecular dynamics (QM/MM MD) simulations combined with DFT and semi-empirical Hamiltonian (AM1d, RM1, PM3, and PM6) methods were performed to study the hydrogen bonding and polar interactions of two inhibitors BEN and BEN1 with trypsin. The results show that the accuracy of treating the hydrogen bonding and polar interactions using QM/MM MD simulation of PM6 can reach the one obtained by the DFT QM/MM MD simulation. Quantum mechanics/molecular mechanics generalized Born surface area (QM/MM-GBSA) method was applied to calculate binding affinities of inhibitors to trypsin and the results suggest that the accuracy of binding affinity prediction can be significantly affected by the accurate treatment of the hydrogen bonding and polar interactions. In addition, the calculated results also reveal the binding specificity of trypsin: (1) the amidinium groups of two inhibitors generate favorable salt bridge interaction with Asp189 and form hydrogen bonding interactions with Ser190 and Gly214, (2) the phenyl of inhibitors can produce favorable van der Waals interactions with the residues His58, Cys191, Gln192, Trp211, Gly212, and Cys215. This systematic and comparative study can provide guidance for the choice of QM/MM MD methods and the designs of new potent inhibitors targeting trypsin.  相似文献   

8.
The combination of Quantum Mechanics (QM) and Molecular Mechanics (MM) methods has become an alternative tool for many applications for which pure QM and MM are not suitable. The QM/MM method has been used for different types of problems, for example: structural biology, surface phenomena, and liquid phase. In this paper, we have used these methods for antibiotics and then we compare results. The calculations were done by the full ab initio method (HF/3-21G) and the (HF/STO-3G) and QM/MM (ONIOM) method with HF (3-21G)/AM1/UFF and HF (STO-3G)/AM1/UFF. We found the geometry that has obtained by the QM/MM method to be very accurate, and we can use this rapid method in place of time consuming ab initio methods for large molecules. Comparison of energy values in the QM/MM and QM methods is given. In the present work, we compare chemical shifts and conclude that the QM/MM method is a perturbed full QM method. The work has been done on penicillin, streptomycin, benzyl penicillin, neomycin, kanamycin, gentamicin, and amoxicillin.  相似文献   

9.
We present a comprehensive analysis of the most likely ground state configuration of the resting state of vanadium dependent chloroperoxidase (VCPO) based on quantum mechanics/molecular mechanics (QM/MM) evaluations of ground state properties, UV-vis spectra and NMR chemical shifts. Within the QM/MM framework, density functional theory (DFT) calculations are used to characterize the resting state of VCPO via time-dependent density functional theory (TD-DFT) calculations of electronic excitation energies and NMR chemical shifts. Comparison with available experimental data allows us to determine the most likely protonation state of VCPO, a state which results in a doubly protonated axial oxygen, a site largely stabilized by hydrogen bonds. We found that the bulk of the protein that is beyond the immediate layer surrounding the cofactor, has an important electrostatic effect on the absorption maximum. Through examination of frontier orbitals, we analyze the nature of two bound water molecules and the extent to which relevant residues in the active site influence the spectroscopy calculations.  相似文献   

10.
The reaction between the antibiotic cefotaxime and the CTX-M-14 class A serine hydrolase is addressed from a theoretical point of view, by means of hybrid quantum mechanics/molecular mechanical (QM/MM) calculations, adopting a new approach that postulates that the residue Ser70 itself should play the role of the acid-base species required for the cefotaxime acylation. The proposed mechanism differs from earlier proposals existing in literature for other class A β-lactamases. The results confirm the hypothesis, and show that the reaction should occur via a concerted mechanism in which the acylation of the lactam carbonyl carbon, protonation of the N7 lactam atom, and opening of the β-lactam ring occurs simultaneously. Exploration of the potential energy surface shows three critical points, associated with reactants, transition state and product. The transition state is characterized by frequency, intrinsic reaction coordinate, atomic charge, and bond orders calculations. The calculated activation barrier is 20 kcal mol?1, and the reaction appears to be slightly endothermic by about 12 kcal mol?1. We conclude that this approach is feasible, and should be considered as an alternative mechanism or may exist in competition with others already published in the literature. This information should be useful for the design of novel antibiotics and β-lactamase inhibitors.
Graphical abstract Three-dimensional view of the potential energy surface of cefotaxime
  相似文献   

11.
Wong KY  Gao J 《The FEBS journal》2011,278(14):2579-2595
Molecular dynamics simulations employing a combined quantum mechanical and molecular mechanical potential have been carried out to elucidate the reaction mechanism of the hydrolysis of a cyclic nucleotide cAMP substrate by phosphodiesterase 4B (PDE4B). PDE4B is a member of the PDE superfamily of enzymes that play crucial roles in cellular signal transduction. We have determined a two-dimensional potential of mean force (PMF) for the coupled phosphoryl bond cleavage and proton transfer through a general acid catalysis mechanism in PDE4B. The results indicate that the ring-opening process takes place through an S(N)2 reaction mechanism, followed by a proton transfer to stabilize the leaving group. The computed free energy of activation for the PDE4B-catalyzed cAMP hydrolysis is about 13 kcal·mol(-1) and an overall reaction free energy is about -17 kcal·mol(-1), both in accord with experimental results. In comparison with the uncatalyzed reaction in water, the enzyme PDE4B provides a strong stabilization of the transition state, lowering the free energy barrier by 14 kcal·mol(-1). We found that the proton transfer from the general acid residue His234 to the O3' oxyanion of the ribosyl leaving group lags behind the nucleophilic attack, resulting in a shallow minimum on the free energy surface. A key contributing factor to transition state stabilization is the elongation of the distance between the divalent metal ions Zn(2+) and Mg(2+) in the active site as the reaction proceeds from the Michaelis complex to the transition state.  相似文献   

12.
Azinomycin B—a well-known antitumor drug—forms cross-links with DNA through alkylation of purine bases and blocks tumor cell growth. This reaction has been modeled using the ONIOM (B3LYP/6-31?+?g(d):UFF) method to understand the mechanism and sequence selectivity. ONIOM results have been checked for reliability by comparing them with full quantum mechanics calculations for selected paths. Calculations reveal that, among the purine bases, guanine is more reactive and is alkylated by aziridine ring through the C10 position, followed by alkylation of the epoxide ring through the C21 position of Azinomycin B. While the mono alkylation is controlled kinetically, bis-alkylation is controlled thermodynamically. Solvent effects were included using polarized-continuum-model calculations and no significant change from gas phase results was observed.
Figure
Insights into the cross-linking mechanism of azinomycin B with DNA bases from hybrid QM/MM Computations  相似文献   

13.
14.
We here report a combined quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) study on the binding interactions between the α(V)β(3) integrin and eight cyclic arginine-glycine-aspartate (RGD) containing peptides. The initial conformation of each peptide within the binding site of the integrin was determined by docking the ligand to the reactive site of the integrin crystal structure with the aid of docking software FRED. The subsequent QM/MM MD simulations of the complex structures show that these eight cyclic RGD-peptides have a generally similar interaction mode with the binding site of the integrin to the cyclo(RGDf-N[M]V) analog found in the crystal structure. Still, there are subtle differences in the interactions of peptide ligands with the integrin, which contribute to the different inhibition activities. The averaged QM/MM protein-ligand interaction energy (IE) is remarkably correlated to the biological activity of the ligand. The IE, as well as a three-variable model which is somewhat interpretable, thus can be used to predict the bioactivity of a new ligand quantitatively, at least within a family of analogs. The present study establishes a helpful protocol for advancing lead compounds to potent inhibitors.  相似文献   

15.
Limonene 1,2-epoxide hydrolase (LEH) is completely different from those of classic epoxide hydrolases (EHs) which catalyze the hydrolysis of epoxides to vicinal diols. A novel concerted general acid catalysis step involving the Asp101-Arg99-Asp132 triad is proposed to play an important role in the mechanism. Combined quantum-mechanical/molecular-mechanical (QM/MM) calculations gave activation barriers of 16.9 and 25.1 kcal/mol at the B3LYP/6-31G(d,p)//CHARMM level for nucleophilic attack on the more and less substituted epoxide carbons, respectively. Furthermore, the important roles of residues Arg99, Tyr53 and Asn55 on mutated LEH were evaluated by QM/MM-scanned energy mapping. These results may provide an explanation for site-directed mutagenesis.  相似文献   

16.
A theoretical QM/MM study of the [NiFe] hydrogenase from Desulfovibrio fructosovorans has been performed to investigate possible routes of proton transfer between the active site and the protein surface. We obtained the minimum energy paths, with a modified version of the nudged elastic band method, for a set of proposed pathways. The calculations were carried out for the crystallographic structure and for several structures of the protein obtained from a molecular dynamics simulation. The results show one of the studied pathways to be preferred for transport from the active site to the surface, but the preference is not so strong when transport occurs in the opposite direction.  相似文献   

17.
MLEs derived from mycobacterium smegmatis and seudomonas fluorescens share ∼76% identity and have a very similar arrangement of catalytic residues in their active site configuration. However, while they catalyze the conversion of cis,cis-muconate to the same achiral product, muconolactone, studies in deuterated solvent surprisingly show that the cyclo-isomerization proceeds with the formation of a chiral product. In this paper we discuss the application of DFT QM/MM calculations on both MLEs, to our knowledge the first reported in the literature on this protein. We investigate the proposal that the base involved in the catalytic reaction is the lysine residue found at the end of the 2nd strand given: (a) that the lysine residue at the end of the 6th strand is in an apparently equally effective position to catalyze reaction and (b) that the structural related epimerase in-fact achieve their stereo-specific outcomes by relying on either the base from the 2nd or 6th strand.  相似文献   

18.
19.
Although a few x-ray structures of the KcsA K(+) channel have been crystallized several issues concerning the mechanisms of the ionic permeation and the protonation state of the selectivity filter ionizable side chains are still open. Using a first-principles quantum mechanical/molecular mechanical simulation approach, we have investigated the protonation state of Glu-71 and Asp-80, two important residues located in the vicinity of the selectivity filter. Results from the dynamics show that a proton is shared between the two residues, with a slight preference for Glu-71. The proton is found to exchange on the picosecond timescale, an interesting phenomenon that cannot be observed in classical molecular dynamics. Simulations of different ionic loading states of the filter show that the probability for the proton transfer is correlated with the filter occupancy. In addition, the Glu-71/Asp-80 pair is able to modulate the potential energy profile experienced by a K(+) ion as it translates along the pore axis. These theoretical predictions, along with recent experimental results, suggest that changes of the filter structure could be associated with a shift in the Glu-Asp protonation state, which in turn would influence the ion translocation.  相似文献   

20.
Xu Q  Guo HB  Wlodawer A  Nakayama T  Guo H 《Biochemistry》2007,46(12):3784-3792
Quantum mechanical/molecular mechanical molecular dynamics and free energy simulations are performed to study the acylation reaction catalyzed by kumamolisin-As, a serine-carboxyl peptidase, and to elucidate the catalytic mechanism and the origin of substrate specificity. It is demonstrated that the nucleophilic attack by the serine residue on the substrate may not be the rate-limiting step for the acylation of the GPH*FF substrate. The present study also confirms the earlier suggestions that Asp164 acts as a general acid during the catalysis and that the electrostatic oxyanion hole interactions may not be sufficient to lead a stable tetrahedral intermediate along the reaction pathway. Moreover, Asp164 is found to act as a general base during the formation of the acyl-enzyme from the tetrahedral intermediate. The role of dynamic substrate assisted catalysis (DSAC) involving His at the P1 site of the substrate is examined for the acylation reaction. It is demonstrated that the bond-breaking and -making events at each stage of the reaction trigger a change of the position for the His side chain and lead to the formation of the alternative hydrogen bonds. The back and forth movements of the His side chain between the C=O group of Pro at P2 and Odelta2 of Asp164 in a ping-pong-like mechanism and the formation of the alternative hydrogen bonds effectively lower the free energy barriers for both the nucleophilic attack and the acyl-enzyme formation and may therefore contribute to the relatively high activity of kumamolisin-As toward the substrates with His at the P1 site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号