首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TPCK (N-alpha-p-tosyl-L-phenylalanine chloromethylketone), a potent inhibitor of chymotryptic-type serine proteases, was found to decrease IL2 synthesis in Jurkat T cells. Conversely, the tryptic-type protease inhibitor, TLCK (N-alpha-p-tosyl-lysine chloromethylketone), which structurally is very similar to TPCK, had no effect on IL2 synthesis. Prostaglandin synthesis, a process that is known to reduce IL2 production in T cells, was increased by TPCK but not by TLCK, suggesting that this process could be, at least in part, responsible for the inhibition of IL2 production. Our results imply that a chymotryptic-type serine protease plays an active role in the regulation of IL2 synthesis and thus in the whole process of T-lymphocyte activation.  相似文献   

2.
We used three anti-human anti-CD3 mAb each recognizing different surface CD3 epitopes to differentially perturb the CD3/TCR complex on the surface of Jurkat T cells. In the presence of phorbol ester, these anti-CD3 mAb triggered differential IL-2 production in Jurkat T cells, which could not be explained by differences in kinetics of IL-2 production, by differences in IL-2 adsorption caused by differential surface expression of p55 or p75 IL-2R, by effects on IL-2 secretion rather than actual synthesis, or by differential toxicities of the anti-CD3 mAb to Jurkat cells. In addition, this differential anti-CD3-induced IL-2 production could not be explained by differences in mAb isotype or in avidities of the anti-CD3 mAb for the Jurkat cells. Moreover, anti-CD3 mAb covalently immobilized onto beads also differentially induced IL-2 production in Jurkat cells, suggesting that the differential IL-2 response is not based on differential rates of anti-CD3-induced modulation of Jurkat cell surface CD3. Although differences among the anti-CD3 mAb in the initial rates of binding to Jurkat cell were observed, this was also believed unlikely to explain the differential IL-2 response. Regardless of the anti-CD3 mAb used, anti-CD3-induced total inositol phosphate (IP) production did not necessarily correlate with anti-CD3-induced IL-2 production. Nevertheless, despite the differences among the anti-CD3 mAb in inducing IL-2 production, the calcium responses were grossly similar. Taken together, these observations indicate that CD3/TCR-mediated IL-2 production in Jurkat cells can be dissociated from total IP generation, and the basis of differential CD3/TCR-mediated IL-2 production in these cells does not appear to be at the level of the initial activation-induced calcium response. These studies suggest that the nature of the CD3/TCR ligand (its physical form and/or the specific epitope it perturbs) can either directly influence intracellular events distal to the generation of IP and increase in intracellular free calcium leading to differential IL-2 production or can trigger IP-independent pathways that affect IL-2 production.  相似文献   

3.
Cross-linking class I MHC molecules on human T cell clones by reacting them with various mAb directed at either monomorphic or polymorphic determinants on class I MHC molecules followed by cross-linking with GaMIg stimulated a rise in intracellular free calcium concentration ([Ca2+]i), and induced proliferation and IL-2 production. T cell clones varied in the mean density of class I MHC molecules and the capacity to respond to mAb to class I MHC molecules. However, the functional responses of the clones did not correlate with class I MHC density or the CD4/CD8 phenotype. mAb to polymorphic class I MHC determinants were less able to induce an increase in [Ca2+]i and a functional response in the T cell clones. Additive stimulatory effects were noted when mAb against both HLA-A and HLA-B determinants were employed. Cross-linking class I MHC molecules on Jurkat cells induced a rise by [Ca2+]i and induced IL-2 production upon co-stimulation with PMA. Cross-linking class I MHC molecules on mutant Jurkat cells that expressed diminished levels of CD3 and were unable to produce IL-2 in response to anti-CD3 stimulation triggered both a rise in [Ca2+]i and IL-2 production with PMA co-stimulation. In contrast, cross-linking class I MHC molecules on mutant Jurkat cells that were CD3- stimulated neither a rise in [Ca2+]i nor IL-2 production. The combination of mAb to CD28 or ionomycin and PMA, however, was able to induce IL-2 production by CD3- Jurkat cells. The data demonstrate that cross-linking class I MHC molecules delivers a functionally important signal to T cell clones and Jurkat cells and indicate that class I MHC molecules may function to transduce activation signals to T cells. In addition, the data demonstrate that transmission of an activation signal via class I MHC molecules requires CD3 expression. The data, therefore, support a central role for CD3 in the transduction of activation signals to T cells via class I MHC molecules.  相似文献   

4.
To investigate the requirements for CD2 expression in the activation of T lymphocytes via the CD3-TCR complex, we produced and characterized a series of CD2-variants of the IL-2 producing Jurkat leukemia cell line, J32 (surface phenotype, CD2+, CD3+, CD28+). These mutants were derived by radiation and immunoselection, and were cloned under limiting dilution conditions. A total of 3 out of 30 of these mutants selectively lost the expression of both CD2 surface molecules and CD2 mRNA, and retained the expression of the CD3-TCR complex and the CD28 molecule. A mitogenic combination of anti-CD2 antibodies (9.6 + 9-1) failed to stimulate activation of these variants as measured by mobilization of intracellular Ca2+ and by IL-2 production. The CD2- mutants stimulated with anti-CD3 or anti-TCR mAb revealed an 8- to 32-fold decrease in IL-2 production and IL-2 mRNA accumulation as compared with the parental cells. No alteration of CD3-TCR-induced mobilization of intracellular Ca2+ was observed in the CD2- mutants. Reconstitution of CD2 expression by gene transfer in two J32 CD2- mutants restored IL-2 production and IL-2 mRNA accumulation in responses to both anti-CD2 and anti-CD3-TCR mAb. These results are the first direct demonstration of the requirement for CD2 molecules in optimizing IL-2 response in human T cells stimulated via CD3-TCR complex.  相似文献   

5.
A chronically HIV-1-infected T cell clone (J1.1) derived from Jurkat cells was developed that possesses defects in CD3 signaling. This clone was phenotypically determined to be CD4- and express a reduced surface density of CD3 as compared with a pool of uninfected Jurkat clones. Although J1.1 could be induced with TNF-alpha to produce HIV-1 particles, stimulation via the CD3 (T3-Ti) complex, using mAb cross-linking, had no effect on viral production. Further investigation revealed that J1.1 secreted approximately 20-fold less IL-2 than did uninfected Jurkat cells after anti-CD3 treatment. In addition, a separate defect in Ca2+ mobilization was noted in the HIV-1-infected J1.1 line when compared with uninfected Jurkat cells after anti-CD3 cross-linking. The cell line described offers a new model in which to study the mechanisms of several defects directly imposed by HIV-1 on CD3+ cells.  相似文献   

6.
Anthrax lethal toxin (LT) is a critical virulence factor that cleaves and inactivates MAPK kinases (MAPKKs) in host cells and has been proposed as a therapeutic target in the treatment of human anthrax infections. Despite the potential use of anti-toxin agents in humans, the standard activity assays for anthrax LT are currently based on cytotoxic actions of anthrax LT that are cell-, strain-, and species-specific, which have not been demonstrated to occur in human cells. We now report that T cell proliferation and IL-2 production inversely correlate with anthrax LT levels in human cell assays. The model CD4+ T cell tumor line, Jurkat, is a susceptible target for the specific protease action of anthrax LT. Anthrax LT cleaves and inactivates MAPKKs in Jurkat cells, whereas not affecting proximal or parallel TCR signal transduction pathways. Moreover, anthrax LT specifically inhibits PMA/ionomycin- and anti-CD3-induced IL-2 production in Jurkat cells. An inhibitor of the protease activity of anthrax LT completely restores IL-2 production by anthrax LT-treated Jurkat cells. Anthrax LT acts on primary CD4+ T cells as well, cleaving MAPKKs and leading to a 95% reduction in anti-CD3-induced proliferation and IL-2 production. These findings not only will be useful in the development of new human cell-based bioassays for the activity of anthrax LT, but they also suggest new mechanisms that facilitate immune evasion by Bacillus anthracis. Specifically, anthrax LT inhibits IL-2 production and proliferative responses in CD4+ T cells, thereby blocking functions that are pivotal in the regulation of immune responses.  相似文献   

7.
Human T cell clones contain enzymes that can cleave the substrate N-alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester (BLT). All CTL clones tested in this study secreted BLT-serine esterase activity, whereas only one of three tested non-cytolytic T cell clones secreted this enzymatic activity upon Ag-specific activation. BLT-serine esterase secretion could also be induced by the Fc gamma+ target cell Daudi in the presence of mAb specific for the TCR/CD3 complex, CD2, or the T cell activation Ag Tp 103. In addition, anti-CD3 and a mitogenic combination of anti-CD2 mAb, induced secretion of BLT-serine esterase in the absence of target cells, whereas anti-Tp 103 failed to do so. The secreted BLT-serine esterase activity induced by the various ligands was inhibited by the serine esterase inhibitors PMSF and m-ABA, but not by N-alpha-p-tosyl-L-lysine chloromethyl ketone. Significant BLT-serine esterase activity was induced by target cells or soluble anti-CD3 in the absence of extracellular Ca2+ ions, provided that extracellular Mg2+ ions were present. The cytotoxic activities by the human CTL clones were completely blocked under these conditions. All ligands that induced BLT-serine esterase secretion in the absence of extracellular Ca2+, induced a transient rise of intracellular Ca2+. Soluble anti-CD3 mAb did not induce a transient rise in intracellular Ca2+ or secretion of BLT serine esterase in CTL preincubated for 2 h with 5 mM EGTA. These findings indicate that mobilization of intracellular Ca2+ in human CTL clones is required for induction of secretion of BLT-serine esterase.  相似文献   

8.
9.
Movement of extracellular Ca2+ is required for the sustained increase in [Ca2+]i necessary for T cell activation. However, the mechanisms mediating mitogen-stimulated Ca2+ movement into T cells have not been completely delineated. To explore the possibility that a Na(+)-dependent Ca2+ (Na+/Ca2+) exchanger might play a role in the mitogen-induced increases in [Ca2+]i required for T cell activation, the effects of inhibitors of this exchanger were examined. Inhibitors of Na+/Ca2+ exchange suppressed the sustained increase in [Ca2+]i stimulated by ligation of the CD3-TCR complex, but did not affect mobilization of intracellular Ca2+ stores. Consistent with the importance of this prolonged increase in [Ca2+]i in T cell activation, Na+/Ca2+ exchange inhibitors, but not inhibitors of the Na+/H+ antiporter, inhibited DNA synthesis stimulated by immobilized anti-CD3 mAb. Inhibition only occurred when the agents were present during the first hours after stimulation. These agents also inhibited IL-2 production, but not expression of the IL-2R or of an early activation Ag, 4F2. Inhibition of IL-2 production did not account for the inhibition of T cell proliferation as addition of exogenous IL-2 or phorbol ester (PDB) did not overcome the inhibition. In contrast, activation pathways that are not thought to require an increase in [Ca2+]i such as IL-1 + PDB or engagement of CD28 in the presence of PDB were less sensitive to the suppressive effects of inhibitors of Na+/Ca2+ exchange. Thus, proliferation induced by these stimuli was not suppressed by low concentrations of these inhibitors and IL-2 production induced by mAb to CD28 + PDB was not inhibited by any concentration of inhibitors of Na+/Ca2+ exchange. These results suggest that stimulation of a Ca2+ transporter with the same spectrum of inhibition as the Na+/Ca2+ exchanger in other tissues mediates the sustained increase in [Ca2+]i required for T cell activation after CD3 ligation.  相似文献   

10.
We recently reported that the myristoylated peptide N-myristoyl-Lys-Arg-Thr-Leu-Arg (N-m-KRTLR) is a novel protein kinase C inhibitor. In this study, we investigated the biological effects of N-m-KRTLR using as an in vitro model the induction of the IL-2 receptor and IL-2 secretion by Jurkat cells in response to stimulation with 12-O tetradecanoylphorbol-13-acetate (TPA) plus phytohemagglutinin (PHA) and TPA plus OKT3 mAb. N-m-KRTLR significantly suppressed induction of the IL-2 receptor on the surface of the Jurkat cells by TPA plus either PHA or OKT3 mAb. Furthermore, N-m-KRTLR inhibited the production and release of IL-2 from cultured Jurkat cells stimulated with TPA plus either PHA or OKT3 mAb. Similarly, this peptide significantly inhibited the IL-2 production in normal human peripheral blood mononuclear cells in response to stimulation by TPA and PHA. In contrast, this peptide did not affect expression of the CD3 complex on the surface of the Jurkat cells either alone or in the presence of TPA or PHA. Furthermore, N-m-KRTLR did not interfere with the spontaneous proliferation of the Jurkat cells, and its effects on IL-2 secretion and IL-2 receptor expression in the Jurkat cells were evident without loss of cell viability. These results suggest that the novel protein kinase C inhibitor N-m-KRTLR may selectively inhibit certain activation pathways of Jurkat cells and indicate the usefulness of N-m-KRTLR in the analysis of discrete events in T cell activation.  相似文献   

11.
Expression of CD5 regulates responsiveness to IL-1   总被引:1,自引:0,他引:1  
The role of the CD5 surface molecule in T cell responsiveness to IL-1 was examined. A CD5-mutant Jurkat cell line was generated from a CD5+ parent cell line. This CD5- mutant subclone was infected with a defective retrovirus containing the CD5 cDNA and/or the neo gene encoding G418 resistance. The CD5+ wild type Jurkat produced IL-2 in response to anti-CD3 mAb, OKT3, cross-linked to a solid surface. IL-2 production was enhanced by co-culture with IL-1 or anti-CD5 Mab. Neither the CD5- mutant nor the CD5- G418-resistant infectant responded to anti-CD5 mAb or to IL-1. Responsiveness to IL-1 was restored by cell surface expression of CD5 in the CD5+ infectant. Both the CD5+ wild type Jurkat and the CD5+ infectant responded equivalently to purified IL-1, IL-1 alpha and rIL-1 beta. Optimal concentrations of IL-1 and anti-CD5 mAb had an additive effect on the enhancement of IL-2 production stimulated with cross-linked anti-CD3 mAb suggesting that IL-1 and CD5 act through distinct, complementary pathways to augment T cell activation. The correlation of CD5 expression and specific binding of rIL-1 beta was examined in these cell lines. Both the specific binding (at 4 degrees C) and subsequent internalization (at 37 degrees C) of 125I labeled rIL-1 beta was equivalent in the CD5+ infectant and the CD5+ wild type Jurkat cell, whereas specific binding of 125I-labeled rIL-1 beta was markedly decreased in the CD5-G418-resistant infectant. These observations strongly suggest that cell surface expression of CD5 regulates binding of and responsiveness to IL-1.  相似文献   

12.
Activation of Jurkat T cells with anti-TCR, anti-CD3, anti-CD2, or PHA is accompanied by a strong inhibition of phosphatidylserine (PS) synthesis. The inhibition of the synthesis of this phospholipid could be partially reversed by IL-1. In Jurkat cells, IL-1 did not activate phosphodiesterases as demonstrated by the lack of change of inositol triphosphate and diacylglycerol levels as well as the lack of change in cytosolic Ca2+ concentration. Furthermore, IL-1 did not modify the intracellular level of cGMP and cAMP, suggesting that the observed rise of PS synthesis could play the role of mediator IL-1 action. As PS is a necessary cofactor for the activation of protein kinase C, our results suggest strongly that IL-1 modulate protein kinase C activity in the activated lymphocyte through its action on PS synthesis.  相似文献   

13.
T lymphocytes can be activated to proliferate by triggering the T-cell antigen-receptor complex (CD3-Ti) with anti-CD3 (Cluster of Differentiation 3) monoclonal antibody (mAb) or with the mitogenic lectin phytohaemagglutinin A (PHA). We have investigated the relationship between lymphocyte activation and protein phosphorylation in the human leukaemic T-cell line Jurkat. Incubation of 32P-labelled Jurkat cells with anti-CD3 mAb or PHA induced the phosphorylation of two cytosolic proteins that migrate with apparent Mr values of 21,000 (pp21) and 23,000 (pp23) and pI values of 5.1 and 5.0 respectively. Peptide mapping of the two proteins produced the same phosphopeptides pattern, suggesting that pp21 and pp23 are closely related. The phosphorylation of pp21 and pp23 induced by anti-CD3 mAb appeared to be transient, since it was already detected 2 min after the addition of the mAb, reached a maximum at 10 min and recovered its basal level after 1 h. Phosphorylation of pp21 and pp23 could also be elicited by the Ca2+ ionophore A23187 and sodium orthovanadate (Na3VO4), two agents that bypass the T-cell-receptor complex and produced an increase in cytosolic Ca2+ concentration. In addition, we found that vanadate, like the Ca2+ ionophore, induced the secretion of interleukin-2 (IL-2) when used in combination with a submitogenic concentration of the phorbol ester 12-O-tetradecanoylphorbol 13-acetate. These results show that the Ca2+-dependent phosphorylation of pp21 and pp23 represents an early event in the process of signal transduction through the CD3-Ti receptor complex.  相似文献   

14.
CD59 functions as a signal-transducing molecule for human T cell activation.   总被引:16,自引:0,他引:16  
The CD59 Ag is a 20-kDa protein that is widely expressed on most leukocytes and RBC, is coupled to the membrane by a phosphatidylinositol-glycan anchoring structure, plays a role in cell interaction between monocytes and T cells, and also functions as an inhibitor of cytolysis by the terminal C components C5b-9. Because this molecule is structurally related to the murine Ly-6 family of Ag, we have investigated whether anti-CD59 mAb might be capable of activating human T lymphocytes in a manner similar to that described for antibodies to the murine Ly-6 Ag. In the presence of the appropriate co-stimulators, mAb to one of the two epitopes on CD59 were capable of inducing both a rise in intracytoplasmic free Ca2+, inositol phosphate production, IL-2 production, and T cell proliferation. Anti-CD59-induced inositol phosphate turnover and IL-2 production were dependent on co-expression of the CD3/TCR complex. CD59-loss mutants of the Jurkat cell line were completely responsive to stimulation by anti-CD3 thereby demonstrating that CD59 does not play a role as a signal transducer downstream from the TCR. Taken together, these results demonstrate that the CD59 Ag can play multiple distinct roles in the regulation of the immune response.  相似文献   

15.
16.
The present work demonstrates that antibody-induced cross-linking of MHC class I antigens on Jurkat T lymphoma cells leads to a rise in intracellular calcium (Cai2+) and, in the presence of phorbol ester (PMA), to IL-2 production and IL-2 receptor expression. The rise in Cai2+ exhibited a profile very different from that obtained after anti-CD3 antibody-induced activation suggesting that activation signals are transduced differently after binding of anti-CD3 antibody and class I cross-linking, respectively. However, when Cai2+ was examined in individual Jurkat cells by means of a digital image processing system no differences were observed after cross-linking with anti-CD3 and anti-MHC class I antibodies, respectively. Two CD3-negative mutant lymphoma lines were nearly totally refractory to class I cross-linking. Taken together our results may indicate the existence of a functional linkage between the T cell receptor complex and MHC class I molecules.  相似文献   

17.
The growth, phenotype, in vitro cytolytic characteristics, and in vivo antitumor activity of murine splenocytes stimulated with anti-murine CD3 mAb in combination with IL-2 as compared with IL-2 alone was investigated. When cultured for 12 days with anti-CD3 mAb + IL-2, murine splenocytes increased 100- to 4000-fold in number compared with only 6- to 20-fold for cultures stimulated with IL-2 alone. Anti-CD3 mAb + IL-2 activated cultures developed high lymphokine-activated killer activity against NK-resistant targets including the P815 mastocytoma cell line and fresh MCA 106 sarcoma. Peak cytotoxicity on a per cell basis developed by day 8 after anti-CD3 mAb + IL-2 activation. A large proportion of the total cytolytic activity of long term anti-CD3 mAb + IL-2-stimulated cultures was related to the presence of anti-CD3 in the assay, indicating enhancement of cytotoxicity by activated CD3+ T cells. Phenotypic analysis indicated that anti-CD3 mAb + IL-2-stimulated cultures contained heterogeneous populations of T cells with increased percentages of both CD4+ and CD8+ phenotypes compared with cultures stimulated with IL-2 alone. Anti-CD3 mAb + IL-2-stimulated cells were tested for their in vivo antitumor activity by using C57BL/6 mice bearing MCA 106 sarcoma pulmonary metastases. IL-2-activated murine killer cells were given in combination with in vivo IL-2 and indomethacin, the latter of which was shown to potentiate the antitumor effect of IL-2. When given on day 5 after tumor inoculation, cell doses as low as 5 x 10(6) anti-CD3 mAb + IL-2-stimulated cells per mouse significantly reduced the number of pulmonary metastases (p less than 0.005). Thus, activation with the combination of anti-CD3 mAb + IL-2 produces rapidly expanding cultures of cytolytic cells with demonstrated in vivo antitumor efficacy.  相似文献   

18.
A mouse mAb, TS 43, which recognized the human CD5 molecule, was found to induce the proliferation of human peripheral blood T cells. TS 43 mAb precipitated from 125I-radiolabeled T cells a 67-kDa band, which comigrated with the 67-kDa band precipitated by the anti-CD5 mAb OKT1. Preclearing of cell lysates with OKT1 mAb abolished the capacity of TS 43 mAb to precipitate radiolabeled material from T cell lysates. Furthermore, a mouse T cell hybridoma transfected with human CD5 was stained by TS 43 mAb. T cell proliferation mediated by TS 43 mAb was monocyte dependent, and was accompanied by IL-2R expression and by IL-2 synthesis. T cell activation by TS 43 mAb involved a rise in intracellular calcium level (CA2+)i and was dependent on the expression of the TCR/CD3 complex because no rise in (Ca2+)i was observed in a TCR-beta-deficient Jurkat T cell mutant. This study indicates that CD5 should be added to the list of surface molecules that can signal T cells to proliferate.  相似文献   

19.
After the initial stages of activation, T cells are not able to proliferate on their own but become competent to proliferate in response to exogenously added lymphokines. In the present study we compared the capacity of mAb directed to CD3 (OKT3, Leu4, UCHT1) or to common epitopes on the alpha/beta T-cell receptor (BMA 031, BMA 032) to induce competence in purified resting T cells. Stimulation with either soluble anti-CD3 or anti-alpha/beta TCR mAb rendered cells competent to progress to DNA synthesis in response to exogenous IL-2. In contrast, only soluble BMA 031 and BMA 032 were able to induce responsiveness to IL-4; anti-CD3 mAb had either to be immobilized or used in combination with anti-CD28 mAb to induce responsiveness to IL-4. Further, BMA 031-induced IL-4 responsiveness was selectively found in the CD45RA+ T cell subset. Analysis of early activation events revealed that the capacity of soluble BMA 031 and BMA 032 to induce responsiveness to IL-4 did not correlate with the ability of these mAb to increase the level of cytosolic Ca2+ or to induce detectable tyrosine phosphorylation. On the other hand, soluble Leu4 (anti-CD3) triggered an increase in both intracellular Ca2+ and tyrosine phosphorylation but was unable to induce IL-4 responsiveness. These data indicate that the induction of IL-2 and IL-4 responsiveness requires different sets of activation signals which can be induced by stimulating different epitopes in the CD3-TCR complex. This supports the concept that distinct activation pathways are coupled to the CD3-TCR complex.  相似文献   

20.
A series of heavy chain isotype switch-variant anti-CD3 monoclonal antibodies (mAb) was used to study the proliferation requirements of purified T cells. None of the variant antibodies was able by itself to induce proliferation. In the presence of exogenous interleukin 2 (IL-2) strong mitogenesis was observed upon stimulation with epsilon-anti-CD3, whereas gamma 1, gamma 2b, gamma 2a, and alpha-anti-CD3 failed to induce T cell proliferation. All variant antibodies induced vigorous proliferation in combination with phorbol myristate acetate. Purified T cells, cultured in the presence of epsilon-anti-CD3, in the absence of IL-2, did not express detectable amounts of TAC-antigen (CD25). The binding of the variant antibodies to the CD3 antigen was evaluated in cross-blocking experiments. It was demonstrated that the epsilon-anti-CD3 antibody, in comparison with the other variant mAb, has a relatively low avidity for the CD3 antigen. In modulation experiments, the IgE variant antibody was unable to induce a substantial loss of CD3 antigen. T cell triggering was investigated at the level of Ca2+ mobilization by means of the dye Indo-1. In contrast to the gamma 1, gamma 2b, gamma 2a, and alpha mAb, which induced a rapid and high rise in the free intracellular calcium level, epsilon-anti-CD3 caused a slow and low rise. These studies indicate that the epsilon-anti-CD3 antibody has a low avidity for the CD3 antigen, compared with the other variant mAb, possibly as a result of monovalent binding. Apparently, the avidity and/or valency of CD3 antigen binding not only has a major influence on CD3 modulation and anti-CD3-induced Ca2+ mobilization, but also sets T cell requirements for IL-2 responsiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号