首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Multipotent mesenchymal stem cells (MSC) are reported to be immunoprivileged as well as immunosuppressive. Hence, they are ideal candidates for allogeneic transplantation to induce regeneration of diseased tissues and organs. However, it is not known whether MSC would retain their immunoprivileged and immunomodulatory properties after differentiating into the local cell types of the transplantation site. This study sought to investigate this question with a novel New Zealand White rabbit osteogenesis model. Results showed that osteogenic cells differentiated from MSC (DOC) in vitro did not express the MHC class II molecule, were incapable of inducing allogeneic lymphocyte proliferation in mixed lymphocyte culture or generating CTL, were inhibitory in ongoing lymphocyte proliferation, and secreted anti-inflammatory cytokines (IL-10 and TGF-beta). There was a significantly higher secretion of IL-10 by DOC than that by MSC, while there was no significant difference between the TGF-beta secretion of MSC and DOC in vitro. However, after IFN-gamma treatment, TGF-beta secretion by DOC significantly decreased despite the increased production by MSC. Four weeks after local DOC implantation, despite MHC class II expression, second-set allogeneic skin rejection showed similar survival to first-set allogeneic skin rejection and DOC appeared to function as osteoblasts. In conclusion, DOC retained their immunoprivileged and immunomodulatory properties in vitro, but the latter was lost following transplantation.  相似文献   

2.
3.
Tet2(Tet家族成员2)在DNA去甲基化修饰、表观遗传调控及骨髓造血中起着重要作用。笔者课题组前期研究发现,随着年龄增长,Tet2敲除小鼠逐步发展为淋系白血病和髓系白血病。但Tet2在骨髓微环境中的作用仍不清楚。进一步研究发现,Tet2敲除的骨髓间充质干细胞(Mesenchymal stem cells,MSC)更多处于G2/M分裂期,其细胞分裂时间缩短,生长速度加快。长周期培养-起始细胞实验表明,Tet2敲除的MSC支持造血干细胞扩增和髓系分化的能力增强。通过点杂交实验发现,Tet2敲除后,骨髓细胞DNA总甲基化水平升高。对Tet2缺失的骨髓细胞进行甲基化测序,结果表明:基因组转录调控区域等多个功能性结构域的甲基化水平明显升高。同时,敲除Tet2的MSC分泌IL-8、IL-18等炎性细胞因子的能力下降;敲除Tet2的MSC更多分泌促进造血干细胞髓系分化的GM-CSF和CCL-3等细胞因子。Tet2可以影响间充质干细胞造血支持作用,进而调节造血。  相似文献   

4.
Evidence has emerged that mesenchymal stem cells (MSCs) represent a promising cell population for supporting new clinical cellular therapies. Currently, bone marrow represents the main source of MSCs, but their differentiation capacity declines with age. We have identified possible novel multilineage mesenchymal cells from human placenta. In addition to their multilineage differentiation, they have a direct immunosuppressive effect on proliferation of T lymphocytes from human adult peripheral blood (PB) and umbilical cord blood (UCB) in vitro. This immunoregulatory feature strongly implies that they have a potential application in allograft transplantation. Since placenta and UCB can be obtained from the same donor, placenta is an attractive source of MSCs for co-transplantation in conjunction with UCB-derived hematopoietic stem cells to reduce the potential of graft-versus-host disease in recipients. However, the way that they modulate the immune system is unclear. In this investigation, we have addressed the effects of human placental MSCs on various subtypes of UCB-derived and PB-derived T lymphocytes. This study was supported by a grant from the National Natural Science Foundation (no. 30571949), by the Beijing Nova Star program, by the Beijing Elitist Fund (20051D0301029), and by the Beijing Obstetrics and Gynecology Hospital.  相似文献   

5.
He  Youdi  Chen  Jun-Feng  Yang  Yan-Mei  Huang  Xiao-Hui  Dong  Xiao-Hui  Yang  Hui-Xin  Cao  Jun-Kai  Jiang  Xiao-Xia 《Molecular biology reports》2019,46(4):3991-3999
Molecular Biology Reports - Mesenchymal stem cells (MSCs) are self-renewing multipotent cells with immunoregulatory function, which makes them attractive candidates for regenerative medicine....  相似文献   

6.
The beneficial effects of mesenchymal stem cells (MSCs) in cardiac cell therapy are greatly limited due to poor survival after transplantation into ischemic hearts. Here, we investigated whether caspase 8 small hairpin RNA (shRNA) modification enhance human MSCs (hMSCs) survival and improve infarcted heart function. Recombinant adenovirus encoding pre-miRNA-155-designed caspase 8 shRNA was prepared to inhibit caspase 8 expression in hMSCs. The effect of caspase 8 shRNA modification on protecting hMSCs from apoptosis under the conditions of serum deprivation and hypoxia was tested by Annexin V/PI staining and caspase 8 activity assay. The caspase 8 shRNA-modified and superparamagnetic iron oxide (SPIO)-labeled hMSCs were injected into the border zone of the infarcted region of rat heart. Echocardiography and Masson trichrome staining were performed to assess heart function and cardiac fibrosis. Our results showed that adenovirus-mediated caspase 8 shRNA could efficiently inhibit caspase 8 expression in hMSCs. Knock-down of caspase 8 expression lead to inhibition of hMSCs apoptosis, reduction of caspase 8 activity and up-regulations of HGF, IGF-1 and Bcl-2. Transplantation of caspase 8 shRNA-modified hMSCs could significantly improve infracted heart function, attenuate cardiac fibrosis. Consistently, the rate of cardiomyocyte apoptosis and caspase 8 activity were significantly decreased, and the survival rate of transplanted hMSCs was markedly elevated in the myocardium receiving caspase 8 shRNA-modified hMSCs transplantation. Together, our findings implicated the therapeutic potential of caspase 8 shRNA-modified hMSCs in improving the infarcted heart function.  相似文献   

7.
Mesenchymal stem cells (MSCs) are currently being tested in clinical trials for the treatment of various diseases owing to the ease of generating and expanding these cells, the ability to differentiate them into various specialized mesenchymal tissue types and their immunosuppressive properties. However, their immunomodulatory potential remains controversial. This review describes the constitutive and regulated expression of molecules of the major histocompatibility complex (MHC) class I antigen processing machinery (APM), co-stimulatory B7 molecules and HLA-G. Furthermore, this review focuses on the secretion of factors, such as cytokines, in mesenchymal stem cells, their functional role in mounting and controlling immune responses mediated by different immune cell subpopulations, their medical significance, and the obstacles that limit their clinical application.  相似文献   

8.
9.
Circulating mesenchymal stem cells   总被引:10,自引:0,他引:10  
Mesenchymal precursor cells (MPCs) are multipotent cells capable of differentiating into various mesenchymal tissues, such as bone, cartilage, fat, tendon and muscle. They are present within both mesenchymal tissues and the bone marrow (BM). If marrow-derived MPCs are to have a role in repair and fibrosis of mesenchymal tissues, transit of these cells through the peripheral blood is to be expected. Although there is evidence for the existence of MPCs within the peripheral blood, results are debated and are not always reproducible. Variations in the methods of cell purification, culture and characterisation may explain the inconsistent results obtained in different studies.  相似文献   

10.
Mesenchymal stem cells(MSCs) possess immunomodulatory properties, which confer enormous potential for clinical application. Considerable evidence revealed their efficacy on various animal models of autoimmune diseases, such as multiple sclerosis, systemic lupus erythematosus and uveitis. MSCs elicit their immunomodulatory effects by inhibiting lymphocyte activation and proliferation, forbidding the secretion of proinflammatory cytokines, limiting the function of antigen presenting cells, and inducing regulatory T(Treg) and B(Breg) cells. The induction of Treg and Breg cells is of particular interest since Treg and Breg cells have significant roles in maintaining immune tolerance. Several mechanisms have been proposed regarding to the MSCs-mediated induction of Treg and Breg cells. Accordingly, MSCs induce regulatory lymphocytes through secretion of multiple pleiotropic cytokines, cell-to-cell contact with target cells and modulation of antigen-presenting cells. Here, we summarized how MSCs induce Treg and Breg cells to provoke immunosuppression.  相似文献   

11.
12.
Porcine mesenchymal stem cells   总被引:26,自引:0,他引:26  
The potential of mesenchymal stem and progenitor cells (MSC) to replicate undifferentiated and to mature into distinct mesenchymal tissues suggests these cells as an attractive source for tissue engineering. The objective was to establish a protocol for the isolation of porcine MSC from bone marrow and to demonstrate their ex vivo differentiation into various mesenchymal tissue cells. MSC from passage 2 were selected for differentiation analysis. Differentiation along the osteogenic lineage was documented by deposition of calcium, visualization of alkaline phosphatase activity, and by analysis of osteogenic marker genes. Adipocytes were identified morphologically and by gene-expression analysis. Deposition of type II collagen and histological staining of proteoglycan indicated chondrogenic differentiation. Therefore, porcine MSC may be introduced as a valuable model system with which to study the mesenchymal lineages for basic research and tissue engineering.  相似文献   

13.
Because of their plasticity and availability, bone-marrow-derived mesenchymal stem cells (MSC) are a potential cell source for treating ischemic heart disease. Schwann cells (SC) play a critical role in neural remodeling and angiogenesis because of their secretion of cytokines such as vascular endothelial growth factor (VEGF). Cell microencapsulation, surrounding cells with a semipermeable polymeric membrane, is a promising tool to shelter cells from the recipient's immune system. We investigated whether transplantation of microencapsulated SC (MC-SC) and MSC together could improve heart function by augmenting angiogenesis in acute myocardial infarction (AMI). Sprague-Dawley rats with ligation of the left anterior descending artery to induce AMI were randomly divided for cell transplantation into four groups-MC-SC+MSC, MC+MSC, MSC, MC-SC, and controls. Echocardiography was performed at 3 days and 2 and 4 weeks after AMI. Rat hearts were harvested on day 28 after transplantation and examined by immunohistochemistry and western blot analysis. Echocardiography revealed differences among the groups in fractional shortening and end-systolic and end-diastolic dimensions (P < 0.05). The number of BrdU-positive cells was greater with MC-SC+MSC transplantation than the other groups (P < 0.01). The vessel density and VEGF level in the infarcted zone was significantly increased with MC-SC+MSC transplantation (P < 0.05). These results show that transplanting a combination of MC-SC and MSC could augment angiogenesis and improve heart function in AMI.  相似文献   

14.
15.
Mesenchymal stem cells (MSCs) can be isolated from almost all tissues and effectively expanded in vitro. Although their true in situ properties and biological functions remain to be elucidated, these in vitro expanded cells have been shown to possess potential to differentiate into specific cell lineages. It is speculated that MSCs in situ have important roles in tissue cellular homeostasis by replacing dead or dysfunctional cells. Recent studies have demonstrated that in vitro expanded MSCs of various origins have great capacity to modulate immune responses and change the progression of different inflammatory diseases. As tissue injuries are often accompanied by inflammation, inflammatory factors may provide cues to mobilize MSCs to tissue sites with damage. Before carrying out tissue repair functions, MSCs first prepare the microenvironment by modulating inflammatory processes and releasing various growth factors in response to the inflammation status. In this review, we focus on the crosstalk between MSCs and immune responses and their potential clinical applications, especially in inflammatory diseases.  相似文献   

16.
17.
Following the identification of bone marrow multipotent cells that could adhere to plastic and differentiate along numerous mesenchymal lineages in vitro, a considerable effort has been invested in characterizing and expanding these cells, which are now called “mesenchymal stem cells” (MSCs), in vitro. Over the years, numerous lines of evidence have been provided in support of their plasticity, their extraordinary immunomodulatory properties, their potential use for tissue engineering purposes, as well as their ability to be recruited to sites of injury, where they might contribute a “natural in vivo system for tissue repair.” Moreover, some studies have attempted the characterization of their cell‐surface specific antigens and of their anatomical location in vivo. Lastly, it has been shown that similar cells could be also isolated from organs other than the bone marrow. Despite this impressive body of investigations, numerous questions related to the developmental origin of these cells, their proposed pluripotency, and their role in bone modeling and remodeling and tissue repair in vivo are still largely unanswered. In addition, both a systematic phenotypic in vivo characterization of the MSC population and the development of a reproducible and faithful in vivo assay that would test the ability of MSCs to self‐renew, proliferate, and differentiate in vivo are just beginning. This brief review summarizes the current knowledge in the field of study of MSCs and the outstanding questions. J. Cell. Biochem. 109: 277–282, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Stem cells have been isolated at all stages of development from the early developing embryo to the post-reproductive adult organism. However, the fetal environment is unique as it is the only time in ontogeny that there is migration of stem cells in large numbers into different organ compartments. While fetal neural and haemopoietic stem cells (HSC) have been well characterised, only recently have mesenchymal stem cells from the human fetus been isolated and evaluated. Our group have characterised in human fetal blood, liver and bone marrow a population of non-haemopoietic, non-endothelial cells with an immunophenotype similar to adult bone marrow-derived mesenchymal stem cells (MSC). These cells, human fetal mesenchymal stem cells (hfMSC), are true multipotent stem cells with greater self-renewal and differentiation capacity than their adult counterparts. They circulate in first trimester fetal blood and have been found to traffic into the maternal circulation, engrafting in bone marrow, where they remain microchimeric for decades after pregnancy. Though fetal microchimerism has been implicated in the pathogenesis of autoimmune disease, the biological role of hfMSC microchimerism is unknown. Potential downstream applications of hfMSC include their use as a target cell for non-invasive pre-natal diagnosis from maternal blood, and for fetal cellular and gene therapy. Using hfMSC in fetal therapy offers the theoretical advantages of avoidance of immune rejection, increased engraftment, and treatment before disease pathology sets in. Aside from allogeneic hfMSC in utero transplantation, the use of autologous hfMSC has been brought a step forward with the development of early blood sampling techniques, efficient viral transduction and clonal expansion. Work is ongoing to determine hfMSC fate post-transplantation in murine models of genetic disease. In this review we will examine what is known about hfMSC biology, as well as discussing areas for future research. The implications of hfMSC trafficking in pregnancy will be explored and the potential clinical applications of hfMSC in prenatal diagnosis and fetal therapy discussed.  相似文献   

19.
Mesenchymal stem cells (MSCs) are a heterogeneous population of stem/progenitor cells with pluripotent capacity to differentiate into mesodermal and non‐mesodermal cell lineages, including osteocytes, adipocytes, chondrocytes, myocytes, cardiomyocytes, fibroblasts, myofibroblasts, epithelial cells, and neurons. MSCs reside primarily in the bone marrow, but also exist in other sites such as adipose tissue, peripheral blood, cord blood, liver, and fetal tissues. When stimulated by specific signals, these cells can be released from their niche in the bone marrow into circulation and recruited to the target tissues where they undergo in situ differentiation and contribute to tissue regeneration and homeostasis. Several characteristics of MSCs, such as the potential to differentiate into multiple lineages and the ability to be expanded ex vivo while retaining their original lineage differentiation commitment, make these cells very interesting targets for potential therapeutic use in regenerative medicine and tissue engineering. The feasibility for transplantation of primary or engineered MSCs as cell‐based therapy has been demonstrated. In this review, we summarize the current knowledge on the signals that control trafficking and differentiation of MSCs. J. Cell. Biochem. 106: 984–991, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Source and nature of embryonic stem cells   总被引:4,自引:0,他引:4  
The originally described method of isolation of mouse ES cells was from implantationally-delayed blastocysts that were subsequently explanted into tissue culture. The cell colony arising from the ICM proliferation was disaggregated and cultures established on mitotically inactivated fibroblast feeder layers. The use of delayed blastocysts is advantageous, but not essential, and ES cells have been similarly derived by explantation of cleavage-stage embryos and also early embryonic epiblast. ES cells are probably not homologous to ICM cells, but may better match five-day epiblast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号