首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Host functions for DNA replication of bacteriophage α3, a representative of group A microvirid phages, were studied using dna and rep mutants of Escherichia coli. In dna+ cells, conversion of phage α3 single-stranded DNA (SS) into the double-stranded replicative form (RF) was insensitive to 30–150 μg/ml of chloramphenicol, 200 μg/ml of rifampicin, 50 μg/ml of nalidixic acid, or 200 μg/ml of novobiocin. At 43°C, synthesis of the parental RF was inhibited in dnaG and dnaZ mutants, but not in dnaE and rep strains. Replication of phage α3 progeny RF was prevented by 50 μg/ml of mitomycin C (in hcr+ bacteria), 50 μg/ml of nalidixic acid or 200 μg/ml of novoviocin, but neither by 30 μg/ml of chloramphenicol nor by 200 μg/ml of rifampicin. Besides dnaG and dnaZ gene products, dnaE and rep functions were essential for the progeny RF synthesis. Host factor dependence of α3 was relatively simple and, in contrast with phages øX174 and G4, α3 did not require dnaB and dnaC(D) activities.  相似文献   

4.
Molecular Genetics and Genomics - This study deals with the effects of a temperature-sensitive (ts) mutation at the gene encoding the DNA gyrase B subunit (gyrB ts) and a deletion of the top gene...  相似文献   

5.
The base excision DNA repair (BER) pathway known to occur in Caenorhabditis elegans has not been well characterized. Even less is known about the DNA polymerase (pol) requirement for the gap-filling step during BER. We now report on characterization of in vitro uracil-DNA initiated BER in C. elegans. The results revealed single-nucleotide (SN) gap-filling DNA polymerase activity and complete BER. The gap-filling polymerase activity was not due to a DNA polymerase β (pol β) homolog, or to another X-family polymerase, since computer-based sequence analyses of the C. elegans genome failed to show a match for a pol β-like gene or other X-family polymerases. Activity gel analysis confirmed the absence of pol β in the C. elegans extract. BER gap-filling polymerase activity was partially inhibited by both dideoxynucleotide and aphidicolin. The results are consistent with a combination of both replicative polymerase(s) and lesion bypass/BER polymerase pol θ contributing to the BER gap-filling synthesis. Involvement of pol θ was confirmed in experiments with extract from pol θ null animals. The presence of the SN BER in C. elegans is supported by these results, despite the absence of a pol β-like enzyme or other X-family polymerase.  相似文献   

6.
Early models of the regulation of initiation of DNA replication by protein complexes predicted that binding of a replication initiator protein to a replicator region is required for initiation of each DNA replication round, since after the initiation event the replication initiator should dissociate from DNA. It was, therefore, assumed that binding of the replication initiator is a signal for triggering DNA replication. However, more recent investigations have revealed that in many replicons this is not the case. Studies on the regulation of the replication of plasmids derived from bacteriophage lambda demonstrated that, once assembled, the replication complex can be inherited by one of the two daughter plasmid copies after each replication round and may function in subsequent replication rounds. Since this DNA-bound protein complex bears information about specific initiation of DNA replication, this phenomenon has been called "protein inheritance." A similar phenomenon has recently been reported for oriJ-based plasmids. Moreover, the current model of the initiation of DNA replication in the yeast Saccharomyces cerevisiae proposes that the origin recognition complex (ORC) remains bound to one copy of the ori sequence (the ARS region) after initiation of DNA replication. Thus, it seems plausible that protein inheritance is not unique for lambda plasmids, but may be a common phenomenon in the control of DNA replication, at least in microbes.  相似文献   

7.
8.
The amount of DNA synthesis in vitro with the ultraviolet-irradiated poly-(dT) · oligo(rA) template initiators catalysed by DNA polymerase α (Masaki, S. and Yoshida, S., Biochim. Biophys. Acta 521, 74–88) decreased with the dose of ultraviolet-irradiation. The ultraviolet irradiation to the template, however, did not affect the rate of incorporation of incorrect deoxynycleotides into the newly synthesized poly(dA). The addition of terminal deoxynucleotidyl transferase to this system enhanced the DNA synthesis to a level which is comparable to that of the control and it concomitantly increased the incorporation of the mismatched deoxynucleotide into the newly synthesized poly(dA) strands. On the other hand, with an unirradiated template initiator, the misincorporation was only slightly enhanced by the addition of terminal deoxynucleotidyl transferase. The sizes of newly synthesized DNA measured by the sedimentation velocities were found to be smaller with the ultraviolet-irradiated templates but they increased to the control level with the addition of terminal deoxynucleotidyl transferase to the systems. These results suggest that terminal deoxynucleotidyl transferase can help DNA polymerase α to ‘bypass’ thymine dimers in vitro by the formation of mismatched regions at the positions opposite to pyrimidine dimers on the template.  相似文献   

9.
Manipulation of the ribosome content of E. coli by means of a nutrient shift-up leads to predictable changes in cellular specific gravity. Thus whole-cell pycnography can be used to monitor the proliferative status of the rRNA loci which cluster closely about the genetic origin of DNA synthesis. In this manner the rate of initiating new rounds of genome replication was followed during an upshift. The results indicate that after a short lag initiation of new rounds abruptly and completely shifts to the rate appropriate to the enriched conditions.  相似文献   

10.
Predicting the location and strength of promoters from genomic sequence requires accurate sequenced-based promoter models. We present the first model of a full-length bacterial promoter, encompassing both upstream sequences (UP-elements) and core promoter modules, based on a set of 60 promoters dependent on σ(E), an alternative ECF-type σ factor. UP-element contribution, best described by the length and frequency of A- and T-tracts, in combination with a PWM-based core promoter model, accurately predicted promoter strength both in vivo and in vitro. This model also distinguished active from weak/inactive promoters. Systematic examination of promoter strength as a function of RNA polymerase (RNAP) concentration revealed that UP-element contribution varied with RNAP availability and that the σ(E) regulon is comprised of two promoter types, one of which is active only at high concentrations of RNAP. Distinct promoter types may be a general mechanism for increasing the regulatory capacity of the ECF group of alternative σ's. Our findings provide important insights into the sequence requirements for the strength and function of full-length promoters and establish guidelines for promoter prediction and for forward engineering promoters of specific strengths.  相似文献   

11.
Di Fiore B  Pines J 《Chromosoma》2008,117(4):333-338
Ordered progression through the cell cycle is essential to maintain genomic stability, and fundamental to this is ubiquitin-mediated proteolysis. In particular, the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase destabilises specific regulators at defined times in the cycle to ensure that each round of DNA replication is followed by cell division. Thus, the proper regulation of the APC/C is crucial in each cell cycle. There are several APC/C regulators that restrict its activity to specific cell cycle phases, and amongst these the early mitotic inhibitor 1 (Emi1) protein has recently come to prominence. Emi1 has been proposed to control APC/C in early mitosis; however, recent evidence questions this role. In this review we discuss new evidence that indicates that Emi1 is essential to restrict APC/C activity in interphase and, by doing so, ensure the proper coordination between DNA replication and mitosis.  相似文献   

12.
Is the nuclear matrix the site of DNA replication in eukaryotic cells?   总被引:1,自引:0,他引:1  
Four types of experiment were carried out to test the recently proposed model of matrix-bound replication in eukaryotic cells. In experiments with pulse-labelling we found preferential association of newly replicated DNA with the matrix only when the procedure for isolation includes first high-salt treatment of isolated nuclei and then digestion with nucleases, or when prior to digestion the nuclei have been stored for a prolonged time. In both cases, however, evidence was found that this preferential association is due to a secondary, artifactual binding of the newly replicated chromatin region to the matrix elements. Pulse-chase experiments and experiments with continuous labelling were carried out to answer the question whether during replication the DNA is reeled through the replication complexes, i.e., whether newly replicated DNA is temporarily or permanently associated with the matrix. The results showed that at that time the matrix DNA does not move from its site of attachment. Since, according to the model of matrix-bound replication, the forks are assumed to be firmly anchored to high-salt resistant proteinaceous matrix structures, the chromatin fragments isolated with endonuclease not recognizing newly replicated DNA and purified by sucrose gradient centrifugation should be free of replication intermediates. The electronmicroscopic analysis of such fragments revealed the existence of intact replication micro-bubbles. Moreover, the fragments with replication configurations appeared as smooth chromatin fibres not attached to elements characteristic for the matrix. All these experiments suggest that the nuclear skeleton is not a native site of DNA replication in eukaryotic cells.  相似文献   

13.
14.
The main strategy used by pro-and eukaryotic cells for replication of damaged DNA is translesion synthesis (TLS). Here, we investigate the TLS process catalyzed by DNA polymerases β and λ on DNA substrates using mono-or dinucleotide gaps opposite damage located in the template strand. An analog of a natural apurinic/apyrimidinic site, the 3-hydroxy-2-hydroxymetylthetrahydrofuran residue (THF), was used as damage. DNA was synthesized in the presence of either Mg2+ or Mn2+. DNA polymerases β and λ were able to catalyze DNA synthesis across THF only in the presence of Mn2+. Moreover, strand displacement synthesis was not observed. The primer was elongated by only one nucleotide. Another unusual aspect of the synthesis is that dTTP could not serve as a substrate in all cases. dATP was a preferential substrate for synthesis catalyzed by DNA polymerase β. As for DNA polymerase λ, dGMP was the only incorporated nucleotide out of four investigated. Modified on heterocyclic base photoreactive analogs of dCTP and dUTP showed substrate specificity for DNA polymerase β. In contrast, the dCTP analog modified on the exocyclic amino group was a substrate for DNA polymerase λ. We also observed that human replication protein A inhibited polymerase incorporation by both DNA polymerases β and λ on DNA templates containing damage.  相似文献   

15.
The postulate that a stalled/collapsed replication fork will be generated when the replication complex encounters a UV-induced lesion in the template for leading-strand DNA synthesis is based on the model of semi-discontinuous DNA replication. A review of existing data indicates that the semi-discontinuous DNA replication model is supported by data from in vitro studies, while the discontinuous DNA replication model is supported by in vivo studies in Escherichia coli. Until the question of whether DNA replicates discontinuously in one or both strands is clearly resolved, any model building based on either one of the two DNA replication models should be treated with caution.  相似文献   

16.
Phage ϕ29 DNA replication takes place by a protein-priming mechanism in which the viral DNA polymerase catalyses the covalent linkage of the initiating nucleotide to a specific serine residue of the terminal protein (TP). The N-terminal domain of the ϕ29 TP has been shown to bind to the host DNA in a sequence-independent manner and this binding is essential for the TP nucleoid localisation and for an efficient viral DNA replication in vivo. In the present work we have studied the involvement of the TP N-terminal domain residues responsible for DNA binding in the different stages of viral DNA replication by assaying the in vitro activity of purified TP N-terminal mutant proteins. The results show that mutation of TP residues involved in DNA binding affects the catalytic activity of the DNA polymerase in initiation, as the Km for the initiating nucleotide is increased when these mutant proteins are used as primers. Importantly, this initiation defect was relieved by using the ϕ29 double-stranded DNA binding protein p6 in the reaction, which decreased the Km of the DNA polymerase for dATP about 130–190 fold. Furthermore, the TP N-terminal domain was shown to be required both for a proper interaction with the DNA polymerase and for an efficient viral DNA amplification.  相似文献   

17.
Summary Using various replication mutants of E. coli, the host genes that participate in the replication of some K12-specific single-stranded DNA phages have been determined. Functional products of dnaE,-F,-G and -Z genes are required for the multiplication of K, whereas dnaA,-B,-C(D), H,-I and -P are dispensable for viral replication. In contrast with polB, recA, B, C, or xth functions, host rep activity is essential for K. At the restrictive temperature, the yield of K was markedly reduced in the ligts7 mutant and partially decreased in a polA ts strain. The phage K is thus less dependent on the host cells than X174 and A which require additionally the dnaB,-C(D) and -H functions. Replication of phage St-1 depends on dnaG and -Z gene products, but not on dnaP function. Although not much affected in polA ts host, growth of St-1 was significantly diminished in dnaF or ligts7 mutants.  相似文献   

18.
Interferon gamma (IFN-γ) is an important immunoregulatory cytokine that has a central role against viral and bacterial infections. In this study, the cDNA encoding 141 amino acids of mature IFN-γ from mice splenocytes was cloned in a prokaryotic expression vector pQE 30. Optimization of expression conditions resulted in high IFN-γ protein. Western blot showed that recombinant IFN-γ was specifically recognized by its counterpart anti-mouse IFN-γ antibodies. In vitro dose-dependent studies, with A549 and HeLa cell lines, showed that cloned IFN-γ was safe and had no effect on cell proliferation. The protein prediction and analysis using SOPMA program, revealed that IFN-γ had 80 α-helices, 8 β-turns jointed by 9 extended strands and 44 random coils. A total of four major clusters were observed with murine IFN-γ sharing 39 % homology with human IFN-γ. Pair-wise alignment studies with human revealed 26 % identity and 43.3 % similarity. The recovery of bioactive proteins from inclusion bodies (IBs) is a complex process and various protocols have been developed. We report here a simple, robust and inexpensive purification approach for obtaining recombinant IFN-γ protein expressed as IBs in E.coli.  相似文献   

19.
Polyamines are small molecules associated with a wide variety of physiological functions. Bacterial pathogens have developed subtle strategies to exploit polyamines or manipulate polyamine-related processes to optimize fitness within the host. During the transition from its innocuous E. coli ancestor, Shigella, the aetiological agent of bacillary dysentery, has undergone drastic genomic rearrangements affecting the polyamine profile. A pathoadaptation process involving the speG gene and the cad operon has led to spermidine accumulation and loss of cadaverine. While a higher spermidine content promotes the survival of Shigella within infected macrophages, the lack of cadaverine boosts the pathogenic potential of the bacterium in host tissues. Enteroinvasive E. coli (EIEC) display the same pathogenicity process as Shigella, but have a higher infectious dose and a higher metabolic activity. Pathoadaption events affecting the cad locus have occurred also in EIEC, silencing cadaverine production. Since EIEC are commonly regarded as evolutionary intermediates between E. coli and Shigella, we investigated on their polyamine profile in order to better understand which changes have occurred along the path to pathogenicity. By functional and molecular analyses carried out in EIEC strains belonging to different serotypes, we show that speG has been silenced in one strain only, favouring resistance to oxidative stress conditions and survival within macrophages. At the same time, we observe that the content of spermidine and putrescine, a relevant intermediate in the synthesis of spermidine, is higher in all strains as compared to E. coli. This may represent an evolutionary response to the lack of cadaverine. Indeed, restoring cadaverine synthesis decreases the expression of the speC gene, whose product affects putrescine production. In the light of these results, we discuss the possible impact of pathoadaptation events on the evolutionary emergence of a polyamine profile favouring to the pathogenic lifestyle of Shigella and EIEC.  相似文献   

20.
The DNA mismatch repair (MMR) system plays a crucial role in the prevention of replication errors and in the correction of some oxidative damages of DNA bases. In the present work the most abundant oxidized pyrimidine lesion, 5,6-dihydro-5,6-dihydroxythymidine (thymidine glycol, Tg) was tested for being recognized and processed by the E. coli MMR system, namely complex of MutS, MutL and MutH proteins. In a partially reconstituted MMR system with MutS-MutL-MutH proteins, G/Tg and A/Tg containing plasmids failed to provoke the incision of DNA. Tg residue in the 30-mer DNA duplex destabilized double helix due to stacking disruption with neighboring bases. However, such local structural changes are not important for E. coli MMR system to recognize this lesion. A lack of repair of Tg containing DNA could be due to a failure of MutS (a first acting protein of MMR system) to interact with modified DNA in a proper way. It was shown that Tg in DNA does not affect on ATPase activity of MutS. On the other hand, MutS binding affinities to DNA containing Tg in G/Tg and A/Tg pairs are lower than to DNA with a G/T mismatch and similar to canonical DNA. Peculiarities of MutS interaction with DNA was monitored by Förster resonance energy transfer (FRET) and fluorescence anisotropy. Binding of MutS to Tg containing DNAs did not result in the formation of characteristic DNA kink. Nevertheless, MutS homodimer orientation on Tg-DNA is similar to that in the case of G/T-DNA. In contrast to G/T-DNA, neither G/Tg- nor A/Tg-DNA was able to stimulate ADP release from MutS better than canonical DNA. Thus, Tg residue in DNA is unlikely to be recognized or processed by the E. coli MMR system. Probably, the MutS transformation to active “sliding clamp” conformation on Tg-DNA is problematic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号