首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 788 毫秒
1.
We characterized the function of the rice cytosolic hexokinase Os HXK7(Oryza sativa Hexokinase7),which is highly upregulated when seeds germinate under O_2-deficient conditions. According to transient expression assays that used the promoter:luciferase fusion construct,Os HXK7 enhanced the glucose(Glc)-dependent repression of a rice a-amylase gene(RAmy3D) in the mesophyll protoplasts of maize,but its catalytically inactive mutant alleles did not. Consistently,the expression of Os HXK7,but not its catalytically inactive alleles,complemented the Arabidopsis glucose insensitive2-1(gin2-1) mutant,thereby resulting in the wild type characteristics of Glc-dependent repression,seedling development,and plant growth. Interestingly,Os HXK7-mediated Glc-dependent repression was abolished in the O_2-deficient mesophyll protoplasts of maize. This result provides compelling evidence that Os HXK7 functions in sugar signaling via a glycolysis-dependent manner under normal conditions,but its signaling role is suppressed when O_2 is deficient. The germination of two null Os HXK7 mutants,oshxk7-1 and oshxk7-2,was affected by O_2 deficiency,but overexpression enhanced germination in rice. This result suggests the distinct role that OsH XK7 plays in sugar metabolism and efficient germination by enforcing glycolysis-mediated fermentation in O_2-deficient rice.  相似文献   

2.
Previous studies have revealed a central role of Arabidopsis thaliana hexokinases (AtHXK1 and AtHXK2) in the glucose repression of photosynthetic genes and early seedling development. However, it remains unclear whether HXK can modulate the expression of diverse sugar-regulated genes. On the basis of the results of analyses of gene expression in HXK transgenic plants, we suggest that three distinct glucose signal transduction pathways exist in plants. The first is an AtHXK1-dependent pathway in which gene expression is correlated with the AtHXK1-mediated signaling function. The second is a glycolysis-dependent pathway that is influenced by the catalytic activity of both AtHXK1 and the heterologous yeast Hxk2. The last is an AtHXK1-independent pathway in which gene expression is independent of AtHXK1. Further investigation of HXK transgenic Arabidopsis discloses a role of HXK in glucose-dependent growth and senescence. In the absence of exogenous glucose, plant growth is limited to the seedling stage with restricted true leaf development even after a 3-week culture on MS medium. In the presence of glucose, however, over-expressing Arabidopsis or yeast HXK in plants results in the repression of growth and true leaf development, and early senescence, while under-expressing AtHXK1 delays the senescence process. These studies reveal multiple glucose signal transduction pathways that control diverse genes and processes that are intimately linked to developmental stages and environmental conditions.  相似文献   

3.
4.
Sugars such as sucrose serve dual functions as transported carbohydrates in vascular plants and as signal molecules that regulate gene expression and plant development. Sugar-mediated signals indicate carbohydrate availability and regulate metabolism by co-coordinating sugar production and mobilization with sugar usage and storage. Analysis of mutants with altered responses to sucrose and glucose has shown that signaling pathways mediated by sugars and abscisic acid interact to regulate seedling development and gene expression. Using a novel screen for sugar-response mutants based on the activity of a luciferase reporter gene under the control of the sugar-inducible promoter of the ApL3 gene, we have isolated high sugar-response (hsr) mutants that exhibit elevated luciferase activity and ApL3 expression in response to low sugar concentrations. Our characterization of these hsr mutants suggests that they affect the regulation of sugar-induced and sugar-repressed processes controlling gene expression, growth, and development in Arabidopsis. In contrast to some other sugar-response mutants, they do not exhibit altered responses to ethylene or abscisic acid, suggesting that the hsr mutants may have a specifically increased sensitivity to sugars. Further characterization of the hsr mutants will lead to greater understanding of regulatory pathways involved in metabolite signaling.  相似文献   

5.
Sugars as signaling molecules.   总被引:7,自引:0,他引:7  
Recent studies indicate that, in a manner similar to classical plant hormones, sugars can act as signaling molecules that control gene expression and developmental processes in plants. Crucial evidence includes uncoupling glucose signaling from its metabolism, identification of glucose sensors, and isolation and characterization of mutants and other regulatory components in plant sugar signal transduction pathways. The emerging scenario points to the existence of a complex signaling network that interconnects transduction pathways from sugars and other hormone and nutrient signals.  相似文献   

6.
Glucose functions in plants both as a metabolic resource as well as a hormone that regulates expression of many genes. Arabidopsis hexokinase1 (HXK1) is the best understood plant glucose sensor/transducer, yet we are only now appreciating the cellular complexity of its signaling functions. We have recently shown that one of the earliest detectable responses to plant glucose treatments are extensive alterations of cellular F-actin. Interestingly, AtHXK1 is predominantly located on mitochondria, yet also can interact with actin. A normal functioning actin cytoskeleton is required for HXK1 to act as an effector in glucose signaling assays. We have suggested that HXK1 might alter F-actin dynamics and thereby influence the formation and/or stabilization of cytoskeleton-bound polysomes. In this Addendum, we have extended our initial observations on the subcellular targeting of HXK1 and its interaction with F-actin. We then further consider the cellular context in which HXK1 might regulate gene expression.Key words: Arabidopsis, F-actin, glucose signaling, hexokinase, hTalin, mitochondria, polysomes, protoplasts, transient expression assay, fluorescence microscopy  相似文献   

7.
Sugar and hormone connections   总被引:17,自引:0,他引:17  
Sugars modulate many vital processes that are also controlled by hormones during plant growth and development. Characterization of sugar-signalling mutants in Arabidopsis has unravelled a complex signalling network that links sugar responses to two plant stress hormones--abscisic acid and ethylene--in opposite ways. Recent molecular analyses have revealed direct, extensive glucose control of abscisic acid biosynthesis and signalling genes that partially antagonizes ethylene signalling during seedling development under light. Glucose and abscisic acid promote growth at low concentrations but act synergistically to inhibit growth at high concentrations. The effects of sugar and osmotic stress on morphogenesis and gene expression are distinct. The plasticity of plant growth and development are exemplified by the complex interplay of sugar and hormone signalling.  相似文献   

8.
Hexokinase as a sugar sensor in higher plants.   总被引:17,自引:0,他引:17       下载免费PDF全文
J C Jang  P Len  L Zhou    J Sheen 《The Plant cell》1997,9(1):5-19
The mechanisms by which higher plants recognize and respond to sugars are largely unknown. Here, we present evidence that the first enzyme in the hexose assimilation pathway, hexokinase (HXK), acts as a sensor for plant sugar responses. Transgenic Arabidopsis plants expressing antisense hexokinase (AtHXK) genes are sugar hyposensitive, whereas plants overexpressing AtHXK are sugar hypersensitive. The transgenic plants exhibited a wide spectrum of altered sugar responses in seedling development and in gene activation and repression. Furthermore, overexpressing the yeast sugar sensor YHXK2 caused a dominant negative effect by elevating HXK catalytic activity but reducing sugar sensitivity in transgenic plants. The result suggests that HXK is a dual-function enzyme with a distinct regulatory function not interchangeable between plants and yeast.  相似文献   

9.
Master regulators in plant glucose signaling networks   总被引:1,自引:0,他引:1  
The daily life of photosynthetic plants revolves around sugar production, transport, storage and utilization, and the complex sugar metabolic and signaling networks integrate internal regulators and environmental cues to govern and sustain plant growth and survival. Although diverse sugar signals have emerged as pivotal regulators from embryogenesis to senescence, glucose is the most ancient and conserved regulatory signal that controls gene and protein expression, cell-cycle progression, central and secondary metabolism, as well as growth and developmental programs. Glucose signals are perceived and transduced by two principal mechanisms: direct sensing through glucose sensors and indirect sensing via a variety of energy and metabolite sensors. This review focuses on the comparative and functional analyses of three glucose-modulated master regulators in Arabidopsis thaliana, the hexokinase1 (HXK1) glucose sensor, the energy sensor kinases KIN10/KIN11 inactivated by glucose, and the glucoseactivated target of rapamycin (TOR) kinase. These regulators are evolutionarily conserved, but have evolved universal and unique regulatory wiring and functions in plants and animals. They form protein complexes with multiple partners as regulators or effectors to serve distinct functions in different subcellular locales and organs, and play integrative and complementary roles from cellular signaling and metabolism to development in the plant glucose signaling networks.  相似文献   

10.
Granot D 《Phytochemistry》2008,69(15):2649-2654
Hexokinases (HXKs), catalysts of the first essential step in glucose metabolism, have emerged as important enzymes that mediate sugar sensing in many organisms, including plants. The presence of several types of plant HXK isozymes, located in different intracellular locations, has been suggested. However, recent studies have indicated that most plants have only two types of HXKs, a plastidic stromal isozyme and membrane-associated isozymes located mainly adjacent to the mitochondria, but also in the nucleus. The membrane-associated isozymes are involved in sugar sensing and regulate gene expression. The central role of HXKs in plant development and the increasing interest in their role necessitate the correction of inaccuracies that have spread concerning the substrate specificity and intracellular localization of HXK isozymes, as these inaccuracies are affecting the hypothesized roles presented for these isozymes and shaping future research in this active field.  相似文献   

11.
Plant growth and development are controlled by the concerted action of many signaling pathways that integrate information from environmental signals with that from developmental and metabolic cues. Physiological studies have demonstrated that abscisic acid and sugars have both similar and antagonistic effects on diverse processes, including seed development, germination, and seedling growth. Recent genetic studies have identified several loci that are involved in both sugar and hormonal responses. It is rarely clear whether these apparent linkages reflect direct or indirect interactions between sugar and hormone signaling pathways, but the identification of gene products that are encoded at these loci is allowing these possibilities to be tested.  相似文献   

12.
13.
14.
Regulatory functions of nuclear hexokinase1 complex in glucose signaling   总被引:20,自引:0,他引:20  
Cho YH  Yoo SD  Sheen J 《Cell》2006,127(3):579-589
  相似文献   

15.
16.
17.
Salicylic acid (SA) applied at 10(-3) m in hydroponic culture decreased stomatal conductance (g(s)), maximal CO(2) fixation rate (A(max) ) and initial slopes of the CO(2) (A/C(i)) and light response (A/PPFD) curves, carboxylation efficiency of Rubisco (CE) and photosynthetic quantum efficiency (Q), resulting in the death of tomato plants. However, plants could acclimate to lower concentrations of SA (10(-7) -10(-4) m) and, after 3 weeks, returned to control levels of g(s), photosynthetic performance and soluble sugar content. In response to high salinity (100 mm NaCl), the pre-treated plants exhibited higher A(max) as a function of internal CO(2) concentration (C(i) ) or photosynthetic photon flux density (PPFD), and higher CE and Q values than salt-treated controls, suggesting more effective photosynthesis after SA treatment. Growth in 10(-7) or 10(-4) m SA-containing solution led to accumulation of soluble sugars in both leaf and root tissues, which remained higher in both plant parts during salt stress at 10(-4) m SA. The activity of hexokinase (HXK) with glucose, but not fructose, as substrate was reduced by SA treatment in leaf and root samples, leading to accumulation of glucose and fructose in leaf tissues. HXK activity decreased further under high salinity in both plant organs. The accumulation of soluble sugars and sucrose in roots of plants growing in the presence of 10(-4) m SA contributed to osmotic adjustment and improved tolerance to subsequent salt stress. Apart from its putative role in delaying senescence, decreased HXK activity may divert hexoses from catabolic reactions to osmotic adaptation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号