首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The costimulatory requirements required for peripheral blood T regulatory cells (Tregs) are unclear. Using cell-based artificial APCs we found that CD28 but not ICOS, OX40, 4-1BB, CD27, or CD40 ligand costimulation maintained high levels of Foxp3 expression and in vitro suppressive function. Only CD28 costimulation in the presence of rapamycin consistently generated Tregs that consistently suppressed xenogeneic graft-vs-host disease in immunodeficient mice. Restimulation of Tregs after 8-12 days of culture with CD28 costimulation in the presence of rapamycin resulted in >1000-fold expansion of Tregs in <3 wk. Next, we determined whether other costimulatory pathways could augment the replicative potential of CD28-costimulated Tregs. We observed that while OX40 costimulation augmented the proliferative capacity of CD28-costimulated Tregs, Foxp3 expression and suppressive function were diminished. These studies indicate that the costimulatory requirements for expanding Tregs differ from those for T effector cells and, furthermore, they extend findings from mouse Tregs to demonstrate that human postthymic Tregs require CD28 costimulation to expand and maintain potent suppressive function in vivo.  相似文献   

2.
Addition of rapamycin to cultures of expanding natural CD4+CD25+Foxp3+ T regulatory cells (Tregs) helps maintain their suppressive activity, but the underlying mechanism is unclear. Pim 2 is a serine/threonine kinase that can confer rapamycin resistance. Unexpectedly, pim 2 was found to be constitutively expressed in freshly isolated, resting Tregs, but not in CD4+CD25- T effector cells. Introduction of Foxp3, but not Foxp3Delta2, into effector T cells induced pim 2 expression and conferred preferential expansion in the presence of rapamycin, indicating that Foxp3 can regulate pim 2 expression. Finally, we determined there is a positive correlation between Treg expansion and Foxp3 expression in the presence of rapamycin. Together, these results indicate that Tregs are programmed to be resistant to rapamycin, providing further rationale for why this immunosuppressive drug should be used in conjunction with expanded Tregs.  相似文献   

3.
CD4+CD25+FOXP3+ T regulatory cells (Tregs) are pivotal for the induction and maintenance of peripheral tolerance in both mice and humans. Rapamycin has been shown to promote tolerance in experimental models and to favor CD4+CD25+ Treg-dependent suppression. We recently reported that rapamycin allows in vitro expansion of murine CD4+CD25+FoxP3+ Tregs, which preserve their suppressive function. In the current study, we show that activation of human CD4+ T cells from healthy subjects in the presence of rapamycin leads to growth of CD4+CD25+FOXP3+ Tregs and to selective depletion of CD4+CD25- T effector cells, which are highly sensitive to the antiproliferative effect of the compound. The rapamycin-expanded Tregs suppress proliferation of both syngeneic and allogeneic CD4+ and CD8+ T cells. Interestingly, rapamycin promotes expansion of functional CD4+CD25+FOXP3+ Tregs also in type 1 diabetic patients, in whom a defect in freshly isolated CD4+CD25+ Tregs has been reported. The capacity of rapamycin to allow growth of functional CD4+CD25+FOXP3+ Tregs, but also to deplete T effector cells, can be exploited for the design of novel and safe in vitro protocols for cellular immunotherapy in T cell-mediated diseases.  相似文献   

4.
Naturally occurring CD4(+)CD25(+)FOXP3(+) regulatory T cells suppress the activity of pathogenic T cells and prevent development of autoimmune responses. There is growing evidence that TLRs are involved in modulating regulatory T cell (Treg) functions both directly and indirectly. Specifically, TLR2 stimulation has been shown to reduce the suppressive function of Tregs by mechanisms that are incompletely understood. The developmental pathways of Tregs and Th17 cells are considered divergent and mutually inhibitory, and IL-17 secretion has been reported to be associated with reduced Treg function. We hypothesized that TLR2 stimulation may reduce the suppressive function of Tregs by regulating the balance between Treg and Th17 phenotype and function. We examined the effect of different TLR2 ligands on the suppressive functions of Tregs and found that activation of TLR1/2 heterodimers reduces the suppressive activity of CD4(+)CD25(hi)FOXP3(low)CD45RA(+) (naive) and CD4(+)CD25(hi)FOXP3(hi)CD45RA(-) (memory or effector) Treg subpopulations on CD4(+)CD25(-)FOXP3(-)CD45RA(+) responder T cell proliferation while at the same time enhancing the secretion of IL-6 and IL-17, increasing RORC, and decreasing FOXP3 expression. Neutralization of IL-6 or IL-17 abrogated Pam3Cys-mediated reduction of Treg suppressive function. We also found that, in agreement with recent observations in mouse T cells, TLR2 stimulation can promote Th17 differentiation of human T helper precursors. We conclude that TLR2 stimulation, in combination with TCR activation and costimulation, promotes the differentiation of distinct subsets of human naive and memory/effector Tregs into a Th17-like phenotype and their expansion. Such TLR-induced mechanism of regulation of Treg function could enhance microbial clearance and increase the risk of autoimmune reactions.  相似文献   

5.
Rapamycin is an immunosuppressive drug currently used in different clinical settings. Although the capacity of rapamycin to inhibit the mammalian target of rapamycin serine/threonine protein kinase and therefore T cell cycle progression is well known, its effects are complex and not completely understood. It has been reported recently that TCR-mediated stimulation of murine CD4+ T cells in the presence of rapamycin results in increased proportions of CD4+ T cells with suppressive functions, suggesting that the drug may also exert its immunosuppressive activity by promoting the selective expansion of naturally occurring CD4+ regulatory T cells (Treg). In this study, we show that stimulation of human circulating CD4+ T cells in the presence of rapamycin results indeed in highly increased suppressor activity. By assessing the effect of rapamycin on the growth of nonregulatory and Treg populations of defined differentiation stages purified ex vivo from circulating CD4+ T cells, we could demonstrate that this phenomenon is not due to a selective expansion of naturally occurring Tregs, but to the capacity of rapamycin to induce, upon TCR-mediated stimulation, suppressor functions in conventional CD4+ T cells. This condition, however, is temporary and reversible as it is dependent upon the continuous presence of rapamycin.  相似文献   

6.
Mouse studies demonstrated that infusion of CD4+CD25+ regulatory T cells (Tregs) prevented graft versus host disease (GVHD) lethality after bone marrow transplantation (BMT). But the potential impact of human Tregs on GVHD has not been well demonstrated. In this study, we demonstrated that human Tregs enriched from peripheral blood of healthy donors could be expanded ex vivo to clinically relevant cell numbers in 2-3 weeks while maintaining Foxp3, CD25, CTLA-4, and CD62L expression as well as in vitro suppressive function. Furthermore, injection of human PBL into NOD/SCID mice induced lethal xenogenic GVHD, but co-transfer of expanded human Tregs with human PBL significantly enhanced survival, reduced GVHD symptoms, and inhibited human IgG/IgM production in the NOD/SCID mice. These results demonstrated that ex vivo expanded human Tregs retained their in vivo suppressive activity and prevented lethal xenogeneic GVHD, revealing the therapeutic potential of expanded human Tregs for GVHD.  相似文献   

7.
CD4+CD25+ immunoregulatory T cells (Tregs) can be administered to inhibit graft-vs-host disease (GVHD) while preserving graft-vs-leukemia activity after allogeneic bone marrow transplantation in mice. Preclinical studies suggest that it is necessary to infuse as many Tregs as conventional donor T cells to achieve a clinical effect on GVHD. Thus, it would be necessary to expand Tregs ex vivo before transplantation. Two strategies have been proposed: expansion of Tregs stimulated by anti-CD3/CD28-coated microbeads for polyclonal activation or by host-type allogeneic APCs for selecting Tregs specific for host Ags. In this study, we describe the mechanisms by which ex vivo-expanded Tregs act on donor T cells to prevent GVHD in mice. We demonstrate that expanded Tregs strongly inhibited the division, expansion, and differentiation of donor T cells, with a more pronounced effect with Tregs specific for host Ags. These latter cells permit the efficient and durable control of GVHD and favor immune reconstitution.  相似文献   

8.
BACKGROUND: CD4(+) CD25(bright+) regulatory T cells (Treg) can be expanded to clinical doses using CD3/CD28 Ab-coated beads plus IL-2. However, this method requires high purity of the starting population to prevent overgrowth by non-regulatory T cells. Rapamycin, an agent that inhibits T-cell proliferation but selectively spares Treg, may be a means to expand Treg from less pure CD25-enriched cells. METHODS: CD25-enriched cells were prepared by a single-step immunomagnetic-selection using anti-CD25 microbeads. The cells were activated with a single addition of anti-CD3/CD28 beads and expanded in ex vivo 15-5% HS and autologous CD4(+) CD25(-) feeder cells,+/-rapamycin (0.01-20 ng/mL). IL-2 was added on day 3. Cells were rested for 2 days in ex vivo 15-5% HS and tested for phenotype, intracellular Foxp3 protein and suppressor activity. RESULTS: In the absence of rapamycin, CD25-enriched fractions expanded >17 000-fold by 21 days. Although suppressor activity was detected to day 14, it declined significantly by 21 days as non-regulatory cells expanded. The addition of rapamycin inhibited expansion of non-regulatory T cells at doses > or =1 ng/mL while increasing suppressor activity and the percentage of CD4(+) CD25(+) CD27(+) Foxp3(+) cells. Rapamycin did not enrich for Foxp3(+) cells in expanded cultures of CD4(+) CD25(-) cells. Treg were also readily expanded in cultures of CD25-enriched cells obtained from patients with multiple sclerosis in the presence of rapamycin. DISCUSSION: The addition of 1-20 ng/mL rapamycin to CD25-enriched cultures increased the purity of cells with the phenotype and function of Treg. This approach may alleviate the need for rigorous enrichment of Treg prior to activation and expansion for potential clinical use.  相似文献   

9.
Circulating human CD4(+)CD25(++)CD127(-)FOXP3(+) T cells with a persistent demethylated regulatory T cell (Treg)-specific demethylated region Foxp3 gene are considered natural Tregs (nTregs). We have shown that it is possible to identify functional Ag-reactive nTregs cells for a range of different common viral and vaccination Ags. The frequency of these Ag-reactive nTregs within the nTreg population is strikingly similar to the frequency of Ag-reactive T effector cells within the CD4(+) T cell population. The Ag-reactive nTregs could be recognized with great specificity by induction of CD154 expression. These CD154(+) Ag-reactive nTregs showed a memory phenotype and shared all phenotypical and functional characteristics of nTregs. The isolated CD154(+) nTregs could be most efficiently expanded by specific antigenic stimulation, while their Ag-reactive suppressive activity was maintained. After an in vivo booster Ag challenge, the ratio of Ag-reactive T cells to Ag-reactive Tregs increased substantially, which could be attributed to the rise in effector T cells but not Tregs. In conclusion, the nTreg population mirrors the effector T cell population in the frequency of Ag-reactive T cells. Isolation and expansion of functional Ag-reactive nTregs is possible and of potential benefit for specific therapeutic goals.  相似文献   

10.
CD8 T cells stimulated with a suboptimal dose of anti-CD3 Abs (100 pg/ml) in the presence of IL-15 retain a naive phenotype with expression of CD45RA, CD28, CD27, and CCR7 but acquire new functions and differentiate into immunosuppressive T cells. CD8(+)CCR7(+) regulatory T cells (Tregs) express FOXP3 and prevent CD4 T cells from responding to TCR stimulation and entering the cell cycle. Naive CD4 T cells are more susceptible to inhibition than memory cells. The suppressive activity of CD8(+)CCR7(+) Tregs is not mediated by IL-10, TGF-β, CTLA-4, CCL4, or adenosine and relies on interference with very early steps of the TCR signaling cascade. Specifically, CD8(+)CCR7(+) Tregs prevent TCR-induced phosphorylation of ZAP70 and dampen the rise of intracellular calcium in CD4 T cells. The inducibility of CD8(+)CCR7(+) Tregs is correlated with the age of the individual with PBLs of donors older than 60 y yielding low numbers of FOXP3(low) CD8 Tregs. Loss of CD8(+)CCR7(+) Tregs in the elderly host may be of relevance in the aging immune system as immunosenescence is associated with a state of chronic smoldering inflammation.  相似文献   

11.
Naturally occurring regulatory T cells (Tregs) maintain self tolerance by dominant suppression of potentially self-reactive T cells in peripheral tissues. However, the activation requirements, the temporal aspects of the suppressive activity, and mode of action of human Tregs are subjects of controversy. In this study, we show that Tregs display significant variability in the suppressive activity ex vivo as 54% of healthy blood donors examined had fully suppressive Tregs spontaneously, whereas in the remaining donors, anti-CD3/CD2/CD28 stimulation was required for Treg suppressive activity. Furthermore, anti-CD3/CD2/CD28 stimulation for 6 h and subsequent fixation in paraformaldehyde rendered the Tregs fully suppressive in all donors. The fixation-resistant suppressive activity of Tregs operated in a contact-dependent manner that was not dependent on APCs, but could be fully obliterated by trypsin treatment, indicating that a cell surface protein is directly involved. By add-back of active, fixed Tregs at different time points after activation of responding T cells, the responder cells were susceptible to Treg-mediated immune suppression up to 24 h after stimulation. This defines a time window in which effector T cells are susceptible to Treg-mediated immune suppression. Lastly, we examined the effect of a set of signaling inhibitors that perturb effector T cell activation and found that none of the examined inhibitors affected Treg activation, indicating pathway redundancy or that Treg activation proceeds by signaling mechanisms distinct from those of effector T cells.  相似文献   

12.
Previous reports have suggested that human CD4+ CD25hiFOXP3+ T regulatory cells (Tregs) have functional plasticity and may differentiate into effector T cells under inflammation. The molecular mechanisms underlying these findings remain unclear. Here we identified the residue serine 422 of human FOXP3 as a phosphorylation site that regulates its function, which is not present in murine Foxp3. PIM1 kinase, which is highly expressed in human Tregs, was found to be able to interact with and to phosphorylate human FOXP3 at serine 422. T cell receptor (TCR) signaling inhibits PIM1 induction, whereas IL-6 promotes PIM1 expression in in vitro expanded human Tregs. PIM1 negatively regulates FOXP3 chromatin binding activity by specifically phosphorylating FOXP3 at Ser422. Our data also suggest that phosphorylation of FOXP3 at the Ser418 site could prevent FOXP3 phosphorylation at Ser422 mediated by PIM1. Knockdown of PIM1 in in vitro expanded human Tregs promoted FOXP3-induced target gene expression, including CD25, CTLA4, and glucocorticoid-induced tumor necrosis factor receptor (GITR), or weakened FOXP3-suppressed IL-2 gene expression and enhanced the immunosuppressive activity of Tregs. Furthermore, PIM1-specific inhibitor boosted FOXP3 DNA binding activity in in vitro expanded primary Tregs and also enhanced their suppressive activity toward the proliferation of T effector cells. Taken together, our findings suggest that PIM1 could be a new potential therapeutic target in the prevention and treatment of human-specific autoimmune diseases because of its ability to modulate the immunosuppressive activity of human Tregs.  相似文献   

13.
Low Ag dose promotes induction and persistence of regulatory T cells (Tregs) in mice, yet few studies have addressed the role of Ag dose in the induction of adaptive CD4(+)FOXP3(+) Tregs in humans. To this end, we examined the level of FOXP3 expression in human CD4(+)CD25(-) T cells upon activation with autologous APCs and varying doses of peptide. Ag-specific T cells expressing FOXP3 were identified by flow cytometry using MHC class II tetramer (Tmr). We found an inverse relationship between Ag dose and the frequency of FOXP3(+) cells for both foreign Ag-specific and self Ag-specific T cells. Through studies of FOXP3 locus demethylation and helios expression, we determined that variation in the frequency of Tmr(+)FOXP3(+) T cells was not due to expansion of natural Tregs, but instead, we found that induction, proliferation, and persistence of FOXP3(+) cells was similar in high- and low-dose cultures, whereas proliferation of FOXP3(-) T cells was favored in high Ag dose cultures. The frequency of FOXP3(+) cells positively correlated with suppressive function, indicative of adaptive Treg generation. The frequency of FOXP3(+) cells was maintained with IL-2, but not upon restimulation with Ag. Together, these data suggest that low Ag dose favors the transient generation of human Ag-specific adaptive Tregs over the proliferation of Ag-specific FOXP3(-) effector T cells. These adaptive Tregs could function to reduce ongoing inflammatory responses and promote low-dose tolerance in humans, especially when Ag exposure and tolerance is transient.  相似文献   

14.
Regulatory T cells (Tregs) are a promising therapy for several immune-mediated conditions but manufacturing a homogeneous and consistent product, especially one that includes cryopreservation, has been challenging. Discarded pediatric thymuses are an excellent source of therapeutic Tregs with advantages including cell quantity, homogeneity and stability. Here we report systematic testing of activation reagents, cell culture media, restimulation timing and cryopreservation to develop a Good Manufacturing Practice (GMP)–compatible method to expand and cryopreserve Tregs. By comparing activation reagents, including soluble antibody tetramers, antibody-conjugated beads and artificial antigen-presenting cells (aAPCs) and different media, we found that the combination of Dynabeads Treg Xpander and ImmunoCult-XF medium preserved FOXP3 expression and suppressive function and resulted in expansion that was comparable with a single stimulation with aAPCs. Cryopreservation tests revealed a critical timing effect: only cells cryopreserved 1–3 days, but not >3 days, after restimulation maintained high viability and FOXP3 expression upon thawing. Restimulation timing was a less critical process parameter than the time between restimulation and cryopreservation. This systematic testing of key variables provides increased certainty regarding methods for in vitro expansion and cryopreservation of Tregs. The ability to cryopreserve expanded Tregs will have broad-ranging applications including enabling centralized manufacturing and long-term storage of cell products.  相似文献   

15.
16.
Regulatory T cells (Tregs) constitute an attractive therapeutic target given their essential role in controlling autoimmunity. However, recent animal studies provide evidence for functional heterogeneity and lineage plasticity within the Treg compartment. To understand better the plasticity of human Tregs in the context of type 1 diabetes, we characterized an IFN-γ-competent subset of human CD4(+)CD127(lo/-)CD25(+) Tregs. We measured the frequency of Tregs in the peripheral blood of patients with type 1 diabetes by epigenetic analysis of the Treg-specific demethylated region (TSDR) and the frequency of the IFN-γ(+) subset by flow cytometry. Purified IFN-γ(+) Tregs were assessed for suppressive function, degree of TSDR demethylation, and expression of Treg lineage markers FOXP3 and Helios. The frequency of Tregs in peripheral blood was comparable but the FOXP3(+)IFN-γ(+) fraction was significantly increased in patients with type 1 diabetes compared to healthy controls. Purified IFN-γ(+) Tregs expressed FOXP3 and possessed suppressive activity but lacked Helios expression and were predominately methylated at the TSDR, characteristics of an adaptive Treg. Naive Tregs were capable of upregulating expression of Th1-associated T-bet, CXCR3, and IFN-γ in response to IL-12. Notably, naive, thymic-derived natural Tregs also demonstrated the capacity for Th1 differentiation without concomitant loss of Helios expression or TSDR demethylation.  相似文献   

17.
Myelodysplastic syndromes are premalignant diseases characterized by cytopenias, myeloid dysplasia, immune dysregulation with association to autoimmunity, and variable risk for acute myeloid leukemia transformation. Studies of FOXP3(+) regulatory T cells (Tregs) indicate that the number and/or activation state may influence cancer progression in these patients. Focusing on patients with a lower risk for leukemia transformation, 18 (34.6%) of 52 patients studied displayed an altered Treg compartment compared with age-matched controls. Delineation of unique Treg subsets revealed that an increase in the absolute number of CD4(+)FOXP3(+)CD25(+)CD127(low)CD45RA(-)CD27(-) Tregs (effector memory Tregs [Treg(EM)]) was significantly associated with anemia (p = 0.046), reduced hemoglobin (p = 0.038), and blast counts ≥5% (p = 0.006). In healthy donors, this Treg(EM) population constitutes only 2% of all Tregs (one to six Tregs per microliter) in peripheral blood but, when isolated, exhibit greater suppressive activity in vitro. With a median follow-up of 3.1 y (range 2.7-4.9 y) from sample acquisition, increased numbers of Treg(EM) cells proved to have independent prognostic importance in survival estimates, suggesting that enumeration of this Treg subset may be a more reliable indicator of immunological escape than FOXP3(+) T cells as a whole. Based on multivariate analyses, Treg(EM) impacted survival independently from myeloblast characteristics, cytopenias, karyotype, and comorbidities. Based on these findings, Treg(EM) cell expansion may be synonymous with human Treg activation and indicate microenvironmental changes conducive to transformation in myelodysplastic syndromes.  相似文献   

18.
CD4+ Regulatory T cells (Tregs) are potent immune modulators and serve an important function in human immune homeostasis. Depletion of Tregs has led to measurable increases in antigen-specific T cell responses in vaccine settings for cancer and infectious pathogens. However, their role in HIV-1 immuno-pathogenesis remains controversial, as they could either serve to suppress deleterious HIV-1-associated immune activation and thus slow HIV-1 disease progression or alternatively suppress HIV-1-specific immunity and thereby promote virus spread. Understanding and modulating Treg function in the context of HIV-1 could lead to potential new strategies for immunotherapy or HIV vaccines. However, important open questions remain on their role in the context of HIV-1 infection, which needs to be carefully studied.Representing roughly 5% of human CD4+ T cells in the peripheral blood, studying the Treg population has proven to be difficult, especially in HIV-1 infected individuals where HIV-1-associated CD4 T cell and with that Treg depletion occurs. The characterization of regulatory T cells in individuals with advanced HIV-1 disease or tissue samples, for which only very small biological samples can be obtained, is therefore extremely challenging. We propose a technical solution to overcome these limitations using isolation and expansion of Tregs from HIV-1-positive individuals.Here we describe an easy and robust method to successfully expand Tregs isolated from HIV-1-infected individuals in vitro. Flow-sorted CD3+CD4+CD25+CD127low Tregs were stimulated with anti-CD3/anti-CD28 coated beads and cultured in the presence of IL-2. The expanded Tregs expressed high levels of FOXP3, CTLA4 and HELIOS compared to conventional T cells and were shown to be highly suppressive. Easier access to large numbers of Tregs will allow researchers to address important questions concerning their role in HIV-1 immunopathogenesis. We believe answering these questions may provide useful insight for the development of an effective HIV-1 vaccine.  相似文献   

19.
Background aimsExpansion of anti-CD25 bead-isolated human Tregs culture has paradoxically resulted in reduced suppressive activity, but the mechanism(s) responsible for these observations are poorly defined.MethodsMagnetic-bead isolated human CD25+ cells were expanded with anti-CD3/CD28 beads and high doses of rhIL-2. Detection of Fas and Fas ligand (Fas-L) expression, activation of Caspase 8, cell proliferation and cytokine production was evaluated by multi-color fluorescence-activated cell sorting analysis. The role of Fas–Fas-L–mediated cell death was dissected through the use of agonist or antagonist monoclonal antibodies directed at Fas and Fas-L.ResultsRepeated expansion of bead-enriched CD4+CD25+ cells generated a cellular product with markedly reduced suppressive activity and with significantly increased CD8+ T cells and CD4+ T cells producing interferon-γ and/or interleukin-2. We showed that Fas–Fas-L–mediated apoptosis of CD4+FOXP3high cells and rapid cell-cycling of CD8+ T cells were collectively responsible for the reduced proportion of CD4+FOXP3high cells in expanded cultures. The depletion of CD4+FOXP3high cells and activation of Caspase 8 in CD4+FOXP3high cells was attenuated by Fas antagonist antibody, ZB4, in short-term culture. However, the loss of CD4+FOXP3high cells during expansion was not prevented by either Fas or Fas-L antagonist antibodies.ConclusionsTaken together, the data show that Fas–Fas-L–mediated apoptosis may limit the expansion of anti-CD25 bead-isolated cells in vitro.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号