共查询到20条相似文献,搜索用时 15 毫秒
1.
Chytridiomycosis, a disease contributing to amphibian declines worldwide, is caused by the fungus Batrachochytrium dendrobatidis. Identifying efficient and practical disinfectants effective against B. dendrobatidis is important to reduce the spread of the disease both in the wild and captivity. Previous studies identified a range of suitable disinfectant strategies. We evaluated the suitability of 3 additional disinfectants: two of these (TriGene Virucidal Disinfectant Cleaner and F10 Super Concentrate Disinfectant) are mixtures of chemicals and one (Betadine Antiseptic Liquid) contains a single active ingredient, povidone iodine. The disinfectants were tested using a range of concentrations for 1,5 and 10 min to determine their ability to kill B. dendrobatidis in vitro. The measure of effectiveness was 100% kill of zoosporangia grown in multiwell plates. All disinfectants had a 100% efficacy at concentrations recommended by the manufacturers. The lowest concentrations capable of 100% kill after exposure for 1 min were 0.1 ml l(-1) for TriGene, 0.33 ml l(-1) for F10 and 100 ml l(-1) for Betadine. TriGene is the most effective disinfectant yet to be found, and both TriGene and F10 are more effective than various disinfectants tested in previous studies. TriGene and F10 are considered suitable for use in the field, as only small amounts of concentrate are needed. 相似文献
2.
Retallick RW Miera V Richards KL Field KJ Collins JP 《Diseases of aquatic organisms》2006,72(1):77-85
Batrachochytrium dendrobatidis (Bd) infection on post-metamorphic frogs and salamanders is commonly diagnosed using polymerase chain reaction (PCR) of skin scrapings taken with mildly abrasive swabs. The technique is sensitive, non-lethal, and repeatable for live animals. Tadpoles are generally not sampled by swabbing but are usually killed and their mouthparts excised to test for the pathogen. We evaluated a technique for non-lethal Bd diagnosis using quantitative PCR (qPCR) on swabs scraped over the mouthparts of live tadpoles. The sensitivity of non-lethal (swabbing) and lethal (removal of mouthparts) sampling was assessed using 150 Bd-infected Rana subaquavocalis tadpoles. Swabbing was consistently less sensitive than lethal sampling, but still detected Bd. Experimental Bd prevalence was 41.1% when estimated by destructively sampling mouthparts and 4.7 to 36.6% (mean = 21.4%) when estimated with swabs. Detection rates from swabbing varied with investigator and time since infection. The likelihood of detecting Bd-infected tadpoles was similar regardless of size and developmental stage. Swabbing mouthparts of live tadpoles is a feasible and effective survey technique for Bd, but, because it is less sensitive, more tadpoles must be sampled to estimate prevalence at a confidence level comparable to destructive sampling. 相似文献
3.
Bodinof CM Briggler JT Duncan MC Beringer J Millspaugh JJ 《Diseases of aquatic organisms》2011,96(1):1-7
The pathogenic fungus Batrachochytrium dendrobatidis (Bd) was recently detected in Missouri hellbender Cryptobranchus alleganiensis populations that have declined precipitously for unclear reasons. The objective of this study was to determine whether Bd occurred historically in Missouri hellbender populations or is a relatively novel occurrence. Epidermal tissue was removed from 216 archived hellbenders collected from 7 Missouri streams between 1896 and 1994. Histological techniques and an immunoperoxidase stain were used to confirm historic occurrence of Bd infection in hellbenders from the North Fork of the White (1969, 1973, 1975), Meramec (1975, 1986), Big Piney (1986), and Current rivers (1988). Bd was not detected in hellbenders from the Niangua, Gasconade or Eleven Point rivers. The study detected no evidence for endemism of Bd in Missouri hellbender populations prior to 1969, despite the fact that nearly one third of the hellbenders sampled were collected earlier. Our findings are consistent with the hypothesis that Bd is a non-endemic pathogen in North America that was introduced in the second half of the twentieth century. 相似文献
4.
Garmyn A Van Rooij P Pasmans F Hellebuyck T Van Den Broeck W Haesebrouck F Martel A 《PloS one》2012,7(4):e35038
Infections with Batrachochytrium dendrobatidis (B. dendrobatidis), the causal agent of chytridiomycosis, have been shown to play an important role in the decline of amphibians worldwide. Spread of the fungus is poorly understood. Bird movement might possibly contribute to the spread of B. dendrobatidis in the environment. Therefore, 397 wild geese in Belgium were screened for presence of B. dendrobatidis on their toes using real-time quantitative PCR (qPCR). In addition, chemotaxis towards, adhesion, survival after desiccation and proliferation of B. dendrobatidis on keratinous toe scales from waterfowl were examined in vitro. qPCR revealed that 76 geese (15%) were positive for B. dendrobatidis. Results of the in vitro tests showed that B. dendrobatidis is attracted to the keratinous toes of aquatic birds on which they can adhere and even proliferate. However, desiccation is poorly tolerated. This suggests waterfowl are potential environmental reservoirs for B. dendrobatidis. 相似文献
5.
Amphibian population declines in Honduras have long been attributed to habitat degradation and pollution, but an increasing number of declines are now being observed from within the boundaries of national parks in pristine montane environments. The amphibian chytrid fungus Batrachochytrium dendrobatidis has been implicated in these declines and was recently documented in Honduras from samples collected in Pico Bonito National Park in 2003. This report now confirms Cusuco National Park, a protected cloud forest reserve with reported amphibian declines, to be the second known site of infection for Honduras. B. dendrobatidis infection was detected in 5 amphibian species: Craugastor rostralis, Duellmanohyla soralia, Lithobates maculata, Plectrohyla dasypus, and Ptychohyla hypomykter. D. soralia, P. dasypus, and P. hypomykter are listed as critically endangered in the IUCN Red List of Threatened Species and have severely fragmented or restricted distributions. Further investigations are necessary to determine whether observed infection levels indicate an active B. dendrobatidis epizootic with the potential to cause further population declines and extinction. 相似文献
6.
Hunter DA Speare R Marantelli G Mendez D Pietsch R Osborne W 《Diseases of aquatic organisms》2010,92(2-3):209-216
Since the early 1980s, the southern corroboree frog Pseudophryne corroboree and northern corroboree frog P. pengilleyi have been in a state of decline from their sub-alpine and high montane bog environments on the southern tablelands of New South Wales, Australia. To date, there has been no adequate explanation as to what is causing the decline of these species. We investigated the possibility that a pathogen associated with other recent frog declines in Australia, the amphibian chytrid fungus Batrachochytrium dendrobatidis, may have been implicated in the decline of the corroboree frogs. We used histology of toe material and real-time PCR of skin swabs to investigate the presence and infection rates with B. dendrobatidis in historic and extant populations of both corroboree frog species. Using histology, we did not detect any B. dendrobatidis infections in corroboree frog populations prior to their decline. However, using the same technique, high rates of infection were observed in populations of both species after the onset of substantial population declines. The real-time PCR screening of skin swabs identified high overall infection rates in extant populations of P. corroboree (between 44 and 59%), while significantly lower rates of infection were observed in low-altitude P. pengilleyi populations (14%). These results suggest that the initial and continued decline of the corroboree frogs may well be attributed to the emergence of B. dendrobatidis in populations of these species. 相似文献
7.
Sodium hypochlorite denatures the DNA of the amphibian chytrid fungus Batrachochytrium dendrobatidis
Batrachochytrium dendrobatidis, an aquatic amphibian fungus, has been implicated in many amphibian declines and extinctions. A real-time polymerase chain reaction (PCR) TaqMan assay is now used to detect and quantify B. dendrobatidis on amphibians and other substrates via tissue samples, swabbing and filtration. The extreme sensitivity of this diagnostic test makes it necessary to rigorously avoid cross-contamination of samples, which can produce false positives. One technique used to eliminate contamination is to destroy the contaminating DNA by chemical means. We tested 3 concentrations of sodium hypochlorite (NaOCl) (1, 6 and 12%) over 4 time periods (1, 6, 15 and 24 h) to determine if NaOCl denatures B. dendrobatidis DNA sufficiently to prevent its recognition and amplification in PCR tests for the fungus. Soaking in 12% NaOCl denatured 100% of DNA within 1 h. Six percent NaOCl was on average 99.999% effective across all exposure periods, with only very low numbers of zoospores detected following treatment. One percent NaOCl was ineffective across all treatment periods. Under ideal, clean conditions treatment with 6% NaOCl may be sufficient to destroy DNA and prevent cross-contamination of samples; however, we recommend treatment with 12% NaOCl for 1 h to be confident all B. dendrobatidis DNA is destroyed. 相似文献
8.
The dissemination of the virulent pathogen Batrachochytrium dendrobatidis (Bd) has contributed to the decline and extinction of many amphibian species worldwide. Several different strains have been identified, some of which are sympatric. Interactions between co-infecting strains of a pathogen can have significant influences on disease epidemiology and evolution; therefore the dynamics of multi-strain infections is an important area of research. We stained Bd cells with 2 fluorescent BODIPY fatty acid probes to determine whether these can potentially be used to distinguish and track Bd cell lines in multi-strain experiments. Bd cells in broth culture were stained with 5 concentrations of green-fluorescent BODIPY FL and red-fluorescent BODIPY 558/568 and visualised under an epifluorescent microscope for up to 16 d post-dye. Dyed strains were also assessed for growth inhibition. The most effective concentration for both dyes was 10 pM. This concentration of dye produced strong fluorescence for 12 to 16 d in Bd cultures held at 23 degrees C (3 to 4 generations), and did not inhibit Bd growth. Cells dyed with BODIPY FL and BODIPY 558/568 can be distinguished from each other on the basis of their fluorescence characteristics. Therefore, it is likely that this technique will be useful for research into multi-strain dynamics of Bd infections. 相似文献
9.
10.
MS-222 (tricaine methane sulfonate) is an agent commonly used to anaesthetise or euthanize amphibians used in experiments. It is administered by immersing the animal to allow absorption through the skin. Chytridiomycosis is an important disease of amphibians and research involves experiments with live animals. Batrachochytrium dendrobatidis, the fungus which causes chytridiomycosis, is located in the skin and therefore the organism should come into contact with MS-222 when it is used. B. dendrobatidis is a sensitive organism which could possibly be killed by MS-222. Hence, results of chytridiomycosis studies in which MS-222 is used could be unreliable. A concentration of 2 g l(-1) and an exposure duration of 1 h is at the high end of the range at which MS-222 would be most commonly used. Exposure to 2 g l(-1) MS-222 for 1 h does not kill B. dendrobatidis cultures, suggesting that MS-222 is safe to use in chytridiomycosis studies. 相似文献
11.
Betsy A. Bancroft Barbara A. Han Catherine L. Searle Lindsay M. Biga Deanna H. Olson Lee B. Kats Joshua J. Lawler Andrew R. Blaustein 《Biodiversity and Conservation》2011,20(9):1911-1920
Disease is often implicated as a factor in population declines of wildlife and plants. Understanding the characteristics that
may predispose a species to infection by a particular pathogen can help direct conservation efforts. Recent declines in amphibian
populations world-wide are a major conservation issue and may be caused in part by a fungal pathogen, Batrachochytrium dendrobatidis (Bd). We used Random Forest, a machine learning approach, to identify species-level characteristics that may be related to
susceptibility to Bd. Our results suggest that body size at maturity, aspects of egg laying behavior, taxonomic order and
family, and reliance on water are good predictors of documented infection for species in the continental United States. These
results suggest that, whereas local-scale environmental variables are important to the spread of Bd, species-level characteristics
may also influence susceptibility to Bd. The relationships identified in this study suggest future experimental tests, and
may target species for conservation efforts. 相似文献
12.
Amphibian chytridiomycosis caused by Batrachochytrium dendrobatidis has spread at an alarming rate over large distances throughout sensitive frog populations in eastern Australia, Central America and New Zealand. Infected amphibians and contaminated water are implicated in translocation, but other vectors are unknown. Through in vitro studies we show that potential means of translocation may be moist soil and bird feathers. B. dendrobatidis survived for up to 3 mo in sterile, moist river sand with no other nutrients added. B. dendrobatidis attached to and grew on sterile feathers and were able to be transported by feathers to establish new cultures in media, surviving between 1 and 3 h of drying between transfers. If these in vitro results are valid in the natural environment, the findings raise the possibilities that B. dendrobatidis may be translocated by movement of moist river sand and that birds may carry the amphibian chytrid between frog habitats. However, further studies using sand and feathers containing normal microflora are essential. 相似文献
13.
Chytridiomycosis is an emerging infectious disease caused by the pathogen Batrachochytrium dendrobatidis (Bd) and is the cause of the decline and extinction of amphibian species throughout the world. We surveyed the distribution of Bd within and around the Tasmanian Wilderness World Heritage Area (TWWHA), a 1.38 million ha area of significant fauna conservation value, which provides the majority of habitat for Tasmania's 3 endemic frog species (Litoria burrowsae, Bryobatrachus nimbus and Crinia tasmaniensis). Bd was detected at only 1 (3%) of the 33 sites surveyed within the TWWHA and at 15 (52%) of the 29 sites surveyed surrounding the TWWHA. The relatively low incidence of the disease within the TWWHA suggests that the majority of the TWWHA is currently free of the pathogen despite the fact that the region provides what appears to be optimal conditions for the persistence of Bd. For all survey sites within and around the TWWHA, the presence of Bd was strongly associated with the presence of gravel roads, forest and < 1000 m altitude--factors that in this study were associated with human-disturbed landscapes around the TWWHA. Conversely, the presence of walking tracks was strongly associated with the absence of Bd, suggesting an association of absence with relatively remote locations. The wide distribution of Bd in areas of Tasmania with high levels of human disturbance and its very limited occurrence in remote wilderness areas suggests that anthropogenic activities may facilitate the dissemination of the pathogen on a landscape scale in Tasmania. Because the majority of the TWWHA is not readily accessible and appears to be largely free of Bd, and because Tasmanian frogs reproduce in ponds rather than streams, it may be feasible to control the spread of the disease in the TWWHA. 相似文献
14.
Shaw SD Bishop PJ Berger L Skerratt LF Garland S Gleeson DM Haigh A Herbert S Speare R 《Diseases of aquatic organisms》2010,92(2-3):159-163
The susceptibility of Archey's frog Leiopelma archeyi to Batrachochytrium dendrobatidis (Bd) is unknown, although one large population is thought to have declined sharply due to chytridiomycosis. As primary infection experiments were not permitted in this endangered New Zealand species, 6 wild-caught L. archeyi that naturally cleared infections with Bd while in captivity were exposed again to Bd to assess their immunity. These frogs were from an infected population at Whareorino, which has no known declines. All 6 L. archeyi became reinfected at low intensities, but rapidly self cured, most by 2 wk. Six Litoria ewingii were used as positive controls and developed heavier infections and clinical signs by 3 wk, demonstrating that the zoospore inoculum was virulent. Six negative controls of each species remained uninfected and healthy. Our results show that L. archeyi that have self cured have resistance to chytridiomycosis when exposed. The pattern is consistent with innate or acquired immunity to Bd, and immunological studies are needed to confirm this. 相似文献
15.
Van Sluys M Kriger KM Phillott AD Campbell R Skerratt LF Hero JM 《Diseases of aquatic organisms》2008,81(2):93-97
Chytridiomycosis, caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), is an emerging infectious disease responsible for amphibian declines on several continents. In laboratory conditions, optimal temperatures for Bd growth and survivorship are between 17 and 25 degrees C. We investigated the effect of different storage temperatures, both in field and laboratory conditions, on detection of Bd from swabs stored for 7 d. We sampled 52 wild Litoria wilcoxii males for Bd by simultaneously running 2 cotton swabs along the skin of the frog. One group of swabs was stored in a freezer within 2 h of sampling and the other was kept in a car in an exposed environment for 7 d before being stored in the freezer. In the laboratory experiment, swabs were inoculated with zoospores of Bd and underwent one of 4 treatments: immediate DNA extraction, or storage at 27, 38 or 45 degrees C for 7 d prior to DNA extraction. Swabs from all treatments were analyzed by quantitative (real-time) PCR test. Though prevalence of Bd did not differ significantly between swabs that were frozen and those that remained in a car for 7 d (19.2 vs. 17.3%, respectively), the number of Bd zoospores detected on car swabs taken from infected frogs was, on average, 67% less than that detected on the corresponding frozen swab. In the laboratory experiment, the number of zoospore equivalents varied significantly with treatment (F(3,35) = 4.769, p = 0.007), indicating that there was reduced recovery of Bd DNA from swabs stored at higher temperatures compared with those stored at lower temperatures or processed immediately. We conclude that failure to store swabs in cool conditions can result in a significant reduction in the amount of Bd DNA detected using the PCR assay. Our results have important implications for researchers conducting field sampling of amphibians for Bd. 相似文献
16.
When exploring the possible factors contributing to population declines, it is necessary to consider multiple, interacting environmental stressors. Here, we investigate the impact of 2 factors, ultraviolet radiation and disease, on the survival of anuran amphibians. Exposure to ultraviolet-B (UV-B) radiation increases mortality and results in various sub-lethal effects for many amphibian species. Infectious diseases can also negatively impact amphibian populations. In this study, we exposed metamorphic individuals (metamorphs) to both UV-B and Batrachochytrium dendrobatidis (BD), a fungal pathogen and cause of the disease chytridiomycosis, and monitored survival for 3 wk. We tested for possible interactions between UV-B and BD in 3 species: the Cascades frog Rana cascadae; the Western toad Bufo boreas; and the Pacific treefrog Hyla regilla. We found strong interspecific differences in susceptibility to BD. For example, R. cascadae suffered a large increase in mortality when exposed to BD; B. boreas also experienced mortality, but this effect was small relative to the R. cascadae response. H. regilla did not show any decrease in survival when exposed to either factor. No synergistic interactions between UV-B and BD were found for any of the test species. A previous study investigating the impact of BD on larval amphibians showed different species responses (Blaustein et al. 2005a). Our results highlight the importance of studying multiple life history stages when determining the impact of environmental stressors. The contrast between these 2 studies emphasizes how vulnerability to a pathogen can vary between life history stages within a single species. 相似文献
17.
The chytrid fungus Batrachochytrium dendrobatidis (Bd) is likely the cause of numerous recent amphibian population declines worldwide. While the fungus is generally highly pathogenic to amphibians, hosts express a wide range of responses to infection, probably due to variation among hosts and environmental conditions, but possibly also due to variation in Bd. We investigated variation in Bd by exposing standardized host groups to 2 Bd strains in a uniform environment. All exposed frogs became infected, but subsequent lethal and sub-lethal (weight loss) responses differed among groups. These results demonstrate variation in Bd and suggest variation occurs even at small geographical scales, likely explaining some of the variation in host responses. With lower than expected mortality among infected frogs, we continued our study opportunistically to determine whether or not frogs could recover from chytridiomycosis. Using heat, we cleared infection from half of the surviving frogs, leaving the other half infected, then continued to monitor mortality and weight. Mortality ceased among disinfected frogs but continued among infected frogs. Disinfected frogs gained weight significantly more than infected frogs, to the point of becoming indistinguishable from controls, demonstrating that at least some of the effects of sub-lethal chytridiomycosis on hosts can be non-permanent and reversible. 相似文献
18.
Although mortality in 3 groups of 15 green tree frogs Litoria caerulea exposed to 3 isolates of Batrachochytrium dendrobatidis was 100%, time to death varied with isolate, highlighting the importance of strain and/or passage history in pathogenicity studies and possibly in the epidemiology of chytridiomycosis. A standard naming scheme for isolates of B. dendrobatidis is proposed. 相似文献
19.
Rigoberto Solís Gabriel Lobos Susan F. Walker Matthew Fisher Jaime Bosch 《Biological invasions》2010,12(6):1641-1646
Batrachochytrium dendrobatidis (Bd) is a causal agent of disease and population decline of amphibian populations, and the extinction of several anuran species worldwide. Diverse hypotheses have been provided for the emergence of this fungus in different continents, ranging from global climate change to the vectoring of Bd via the international trade in amphibian species. In order to address these hypotheses, it is important to assess the current distribution of Bd in the context of introduced non-native amphibian species. We sampled several populations of the African clawed frog Xenopus laevis across its distribution in Chile in order to detect the presence of B. dendrobatidis and evaluate the role of this frog as a potential vector. In three of ten sites sampled, individuals harbored B. dendrobatidis infection, with an overall prevalence of infection across the studied populations of 24% (14 positive out of 58 analyzed specimens). The rapid spread exhibited by this frog within Chile suggests that transpecific transmission of the pathogen is possible, perhaps jeopardizing native species. This finding indicates the urgent need to establish long-term monitoring population programs in order to allow early detection disease-driven changes in the sizes of native populations, allowing the prompt application of conservation practices. 相似文献
20.
The efficacy of a number of disinfection treatments was tested on in vitro cultures of the fungus Batrachochytrium dendrobatidis, the causative agent of chytridiomycosis in amphibians. The aim was to evaluate the fungicidal effects of chemical disinfectants, sterilising ultraviolet (UV) light, heat and desiccation, using methods that were feasible for either disinfection in the field, in amphibian husbandry or in the laboratory. The chemical disinfectants tested were: sodium chloride, household bleach (active ingredient: sodium hypochlorite), potassium permanganate, formaldehyde solution, Path-X agricultural disinfectant (active ingredient: didecyl dimethyl ammonium chloride, DDAC), quaternary ammonium compound 128 (DDAC), Dithane, Virkon, ethanol and benzalkonium chloride. In 2 series of experiments using separate isolates of B. dendrobatidis, the fungicidal effect was evaluated for various time periods and at a range of chemical concentrations. The end point measured was death of 100% of zoospores and zoosporangia. Nearly all chemical disinfectants resulted in 100%, mortality for at least one of the concentrations tested. However, concentration and time of exposure was critical for most chemicals. Exposure to 70% ethanol, 1 mg Virkon ml(-1) or 1 mg benzalkonium chloride ml(-1) resulted in death of all zoosporangia after 20 s. The most effective products for field use were Path-X and the quaternary ammonium compound 128, which can be used at dilutions containing low levels (e.g. 0.012 or 0.008%, respectively) of the active compound didecyl dimethyl ammonium chloride. Bleach, containing the active ingredient sodium hypochlorite, was effective at concentrations of 1% sodium hypochlorite and above. Cultures did not survive complete drying, which occurred after <3 h at room temperature. B. dendrobatidis was sensitive to heating, and within 4 h at 37 degrees C, 30 min at 47 degrees C and 5 min at 60 degrees C, 100% mortality occurred. UV light (at 1000 mW m(-2) with a wavelength of 254 nm) was ineffective at killing B. dendrobatidis in culture. 相似文献