首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

The primordial RNA world is a hypothetical era prior to the appearance of protein and DNA, when RNA molecules were the sole building blocks for early forms of life on Earth. A critical concern with the RNA-world hypothesis is the instability of the cytosine nucleobase compared to the other three bases (adenine, guanine, and uracil). The author proposes that cytosine residues could have stably existed in the primordial world in the RNA i-motif, a four-stranded quadruplex structure formed by base-pairing of protonated and unprotonated cytosine residues under acidic conditions. The i-motif structure not only increases the lifetime of cytosine residues by slowing their deamination rate, but could also allow RNA polymers to bind to certain ligands (e.g., anions) to perform critical functions. Future studies focused on determining the rate of cytosine deamination in RNA i-motifs over a range of pH, temperature, and pressure conditions, and on interrogating the interactions between ligands and RNA i-motifs, could uncover new evidence of the origin of life on Earth.

  相似文献   

2.
Beginning with a hypothetical RNA world, it is apparent that many evolutionary transitions led to the complexity of extant species. The duplication of genetic material is rooted in the RNA world. One of two major routes of gene amplification, retroposition, originated from mechanisms that facilitated the transition to DNA as hereditary material. Even in modern genomes the process of retroposition leads to genetic novelties including the duplication of protein and RNA coding genes, as well as regulatory elements and their juxtapositon. We examine whether and to what extent known evolutionary principles can be applied to an RNA-based world. We conclude that the major basic Neo-Darwinian principles that include amplification, variation and selection already governed evolution in the RNA and RNP worlds. In this hypothetical RNA world there were few restrictions on the exchange of genetic material and principles that acted as borders at later stages, such as Weismann's Barrier, the Central Dogma of Molecular Biology, or the Darwinian Threshold were absent or rudimentary. RNA was more than a gene: it had a dual role harboring, genotypic and phenotypic capabilities, often in the same molecule. Nuons, any discrete nucleic acid sequences, were selected on an individual basis as well as in groups. The performance and success of an individual nuon was markedly dependent on the type of other nuons in a given cell. In the RNA world the transition may already have begun towards the linkage of nuons to yield a composite linear RNA genome, an arrangement necessitating the origin of RNA processing. A concatenated genome may have curbed unlimited exchange of genetic material; concomitantly, selfish nuons were more difficult to purge. A linked genome may also have constituted the beginning of the phenotype/genotype separation. This division of tasks was expanded when templated protein biosynthesis led to the RNP world, and more so when DNA took over as genetic material. The aforementioned barriers and thresholds increased and the significance and extent of horizontal gene transfer fluctuated over major evolutionary transitions. At the dawn of the most recent transformation, a fast evolutionary transition that we will be witnessing in our life times, a form of Lamarckism is raising its head.  相似文献   

3.
In vitro selection has proven to be a useful means of explore the molecules and catalysts that may have existed in a primordial 'RNA world'. By selecting binding species (aptamers) and catalysts (ribozymes) from random sequence pools, the relationship between biopolymer complexity and function can be better understood, and potential evolutionary transitions between functional molecules can be charted. In this review, we have focused on several critical events or transitions in the putative RNA world: RNA self-replication; the synthesis and utilization of nucleotide-based cofactors; acyl-transfer reactions leading to peptide and protein synthesis; and the basic metabolic pathways that are found in modern living systems.  相似文献   

4.
Structural motifs in naturally occurring RNAs and RNPs can be employed as new molecular parts for synthetic biology to facilitate the development of novel devices and systems that modulate cellular functions. In this review, we focus on the following: (i) experimental evolution techniques of RNA molecules in vitro and (ii) their applications for regulating gene expression systems in vivo. For experimental evolution, new artificial RNA aptamers and RNA enzymes (ribozymes) have been selected in vitro. These functional RNA molecules are likely to be applicable in the reprogramming of existing gene regulatory systems. Furthermore, they may be used for designing hypothetical RNA-based living systems in the so-called RNA world. For the regulation of gene expressions in living cells, the development of new riboswitches allows us to modulate the target gene expression in a tailor-made manner. Moreover, recently RNA-based synthetic genetic circuits have been reported by employing functional RNA molecules, expanding the repertory of synthetic biology with RNA motifs.  相似文献   

5.
Viroids are subviral plant pathogens at the frontier of life. They are solely composed by a single-stranded circular RNA of 246-401 nt with a compact secondary structure. Viroids replicate autonomously when inoculated into their host plants and incite, in most of them, economically important diseases. In contrast to viruses, viroids do not code for any protein and depend on host enzymes for their replication, which in some viroids occurs in the nucleus and in others in the chloroplast, through a rolling-circle mechanism with three catalytic steps. Quite remarkably, however, one of the steps, cleavage of the oligomeric head-to-tail replicative intermediates to unit-length strands, is mediated in certain viroids by hammerhead ribozymes that can be formed by their strands of both polarities. Viroids induce disease by direct interaction with host factors, the nature of which is presently unknown. Some properties of viroids, particularly the presence of ribozymes, suggest that they might have appeared very early in evolution and could represent 'living fossils' of the precellular RNA world that presumably preceded our current world based on DNA and proteins.  相似文献   

6.
The codon assignment of the quasi-universal genetic code can be assumed to have resulted from the evolutionary pressures that prevailed when the code was still evolving. Here, we review studies of the structure of the genetic code based on optimization models. We also review studies that, from the structure of the code, attempt to derive aspects of the primordial circumstances in which the genetic code froze. Different rationales are summarized, compared with experimental data, discussed in the context of the transition from a RNA world to a DNA-protein world, and linked to the emergence of the last universal common ancestor.  相似文献   

7.
Systematic investigation into the chemical etiology of ribose has led to the discovery of glycerol nucleic acid (GNA) and threose nucleic acid (TNA) as possible progenitor candidates of RNA in the origins of life. Coupled with their chemical simplicity, polymers for both systems are capable of forming stable Watson-Crick antiparallel duplex structures with themselves and RNA, thereby providing a mechanism for the transfer of genetic information between successive genetic systems. Investigation into whether both polymers arose independently or descended from a common evolutionary pathway would provide additional constraints on models that describe the emergence of a hypothetical RNA world. Here we show by thermal denaturation that complementary GNA and TNA mixed sequence polymers are unable, even after prolonged incubation times, to adopt stable helical structures by intersystem cross-pairing. This experimental observation suggests that GNA and TNA, whose structures derive from one another, were not consecutive polymers in the same evolutionary pathway to RNA. Reviewing Editor: Dr. Niles Lehman  相似文献   

8.
9.
Analysis of the updated compilation of more than 8,000 tRNA gene sequences confirmed our previously reported finding that in pairs of consensus tRNAs with complementary anticodons, their second bases in the acceptor stems are also complementary. This dual complementarity points to the following: (1) the operational code embodied in the acceptor stem, and the classic genetic code embodied in the anticodon could have had the same common ancestor; (2) new tRNAs most likely entered primitive translation in pairs with complementary anticodons; and (3) this process of code expansion was directed by the primordial double-strand coding. However, we did not find the dual complementarity when testing all tRNA pairs in which anticodons were complementary only at the central position, but not complementary at least at one of the flanking two positions. This observation, together with certain additional evidence, suggests that both codes were still being shaped (with only the second base established at the time) when the first protein aminoacyl-tRNA synthetases could have already started replacing their ribozymic precursors.  相似文献   

10.
The RNA world hypothesis refers to a hypothetical era prior to coded peptide synthesis, where RNA was the major structural, genetic, and catalytic agent. Though it is a widely accepted scenario, a number of vexing difficulties remain. In this review we focus on a missing link of the RNA world hypothesis—primitive miniribozymes, in particular ligases, and discuss the role of these molecules in the evolution of RNA size and complexity. We argue that prebiotic conditions associated with freezing, rather than “warm and wet” conditions, could have been of key importance in the early RNA world.[Reviewing Editor: Dr. Niles Lehman]  相似文献   

11.
ABSTRACT: The problems associated with the RNA world hypothesis are well known. In the following I discuss some of these difficulties, some of the alternative hypotheses that have been proposed, and some of the problems with these alternative models. From a biosynthetic - as well as, arguably, evolutionary - perspective, DNA is a modified RNA, and so the chickenand- egg dilemma of "which came first?" boils down to a choice between RNA and protein. This is not just a question of cause and effect, but also one of statistical likelihood, as the chance of two such different types of macromolecule arising simultaneously would appear unlikely. The RNA world hypothesis is an example of a 'top down' (or should it be 'present back'?) approach to early evolution: how can we simplify modern biological systems to give a plausible evolutionary pathway that preserves continuity of function? The discovery that RNA possesses catalytic ability provides a potential solution: a single macromolecule could have originally carried out both replication and catalysis. RNA - which constitutes the genome of RNA viruses, and catalyzes peptide synthesis on the ribosome - could have been both the chicken and the egg! However, the following objections have been raised to the RNA world hypothesis: (i) RNA is too complex a molecule to have arisen prebiotically; (ii) RNA is inherently unstable; (iii) catalysis is a relatively rare property of long RNA sequences only; and (iv) the catalytic repertoire of RNA is too limited. I will offer some possible responses to these objections in the light of work by our and other labs. Finally, I will critically discuss an alternative theory to the RNA world hypothesis known as 'proteins first', which holds that proteins either preceded RNA in evolution, or - at the very least - that proteins and RNA coevolved. I will argue that, while theoretically possible, such a hypothesis is probably unprovable, and that the RNA world hypothesis, although far from perfect or complete, is the best we currently have to help understand the backstory to contemporary biology. Reviewers This article was reviewed by Eugene Koonin, Anthony Poole and Michael Yarus (nominated by Laura Landweber).  相似文献   

12.
13.
TransferRNA recognition was used as leit-motiv in the illustration of possible links between a hypothetical primordial RNA world and the contemporary DNA world. In an RNA world, proto-tRNA could have functioned as replication origin and as primitive telomere. Possibly, this primitive structure is preserved in a universal substrate for modern tRNA-specific enzymes. The combination of acceptor stem and T arm (plus a linker) was finally revealed as sufficient for the recognition by prokaryotic and eukaryotic RNase P, as well as other tRNA enzymes. In modern life forms, a tRNA-like element in viral RNAs still serves as replication origin, and furthermore, the recognition of similar structures as cryptic promoters is universally conserved for template-dependent RNA polymerases. Another common property of modern polymerases is their high, but clearly limited and condition-dependent substrate specificity. Very likely, also substrate recognition by primitive polymerases was not more stringent, and this lead to the ocurrence of mixed nucleic acids as intermediates in the transition from genomic RNA to contemporary genomic DNA.Abbreviations (d)NTP (deoxy)nucleoside triphosphate - nt nucleotide(s)  相似文献   

14.
15.
Guilt by association: the arginine case revisited   总被引:3,自引:3,他引:0       下载免费PDF全文
If the genetic code arose in an RNA world, present codon assignments may reflect primordial RNA-amino acid affinities. Whether aptamers selected from random pools to bind free amino acids do so using the cognate codons at their binding sites has been controversial. Here we defend and extend our previous analysis of arginine binding sites, and propose a model for the maintenance of codon-amino acid interactions through the evolution of amino acids from ribozyme cofactors into the building blocks of proteins.  相似文献   

16.
Two different views have been proposed for origins of genes (or proteins). One is that primordial genes evolved from random sequences. This view underlies the concept of modern in vitro evolution experiments that functional molecules (even proteins) evolved from random sequence-libraries. On the contrary, the second view reminds that "random sequences" would be an unusual state in which to find RNA or DNA, because it is their inherent nature to yield periodic structures during the course of semi-conservative replication. In this second view, the periodicity of DNA (or RNA) is responsible for emergence of primordial genes. Although recent reports on the variety of periodicities present in proteins, genes and genomes are consistent with the second view, it has yet to be experimentally tested. We assessed the significance of periodicities of DNA in the origin of genes by constructing such periodic DNAs. The results showed that periodic DNA produced ordered proteins at very high rates, which is in contrast to the fact that proteins with random sequences lack secondary structures. We concluded that periodicity played a pivotal role in the origin of many genes. The observation should pave the way for new experimental evolution systems for proteins.  相似文献   

17.
The RNA world hypothesis states that the early evolution of life went through a stage in which RNA served both as genome and as catalyst. The central catalyst in an RNA world organism would have been a ribozyme that catalyzed RNA polymerization to facilitate self-replication. An RNA polymerase ribozyme was developed previously in the lab but it is not efficient enough for self-replication. The factor that limits its polymerization efficiency is its weak sequence-independent binding of the primer/template substrate. Here we tested whether RNA polymerization could be improved by a cationic arginine cofactor, to improve the interaction with the substrate. In an RNA world, amino acid-nucleic acid conjugates could have facilitated the emergence of the translation apparatus and the transition to an RNP world. We chose the amino acid arginine for our study because this is the amino acid most adept to interact with RNA. An arginine cofactor was positioned at ten different sites on the ribozyme, using conjugates of arginine with short DNA or RNA oligonucleotides. However, polymerization efficiency was not increased in any of the ten positions. In five of the ten positions the arginine reduced or modulated polymerization efficiency, which gives insight into the substrate-binding site on the ribozyme. These results suggest that the existing polymerase ribozyme is not well suited to using an arginine cofactor.  相似文献   

18.
There is considerable variation in rejection rates of parasitic eggs among hosts of avian brood parasites. In this article, we develop a model that can be used to predict host egg rejection behavior in brood parasite-host systems in general, by considering both intra- and interclutch variation in host egg appearance; clutch characteristics that may be important in calculating the fitness of individuals adopting rejecter or acceptor strategies. In addition, we consider the importance of learning the appearance of own eggs during the first breeding attempt and host probability of survival between breeding seasons on evolution of rejection behavior. Based on this model we can predict at which level of parasitism fitness of rejecter individuals is higher than that of acceptor individuals and vice versa. The model analyses show that variation in egg appearance can be a key factor for the evolution of host defense against parasitism. In more detail, analyses show that we should expect to find a prolonged learning period only in hosts that have a high intraclutch variation in egg appearance, because such hosts may potentially experience high costs in terms of recognition errors. Furthermore, learning is in general more adaptive in parasite-host systems in which hosts do have some reproductive success even when parasitized, and when parasitism rates are moderate. By including variables that have not been considered in previous models, our model represents a useful tool in investigations of host rejection behavior in various host-parasite systems.  相似文献   

19.
20.
The structural flexibility of RNA and its ability to store genetic information has led scientists to postulate that RNA could be the key molecule for the development of life on Earth, further leading to formulate the RNA world hypothesis that received a lot of success and acceptance after the discoveries of the last thirty‐five years. Despite its highly structural and functional significance, the difficulty in synthesizing the four nucleobases that form the RNA polymer from the same primordial soup, its low stability, and limited catalytic repertoire, make the RNA world hypothesis less convincing even though it remains the best explanation for the origin of life. An increasing number of scientists are becoming more supportive of a more realistic approach explaining the appearance of life. In this review, I propose an enhanced explanation for the appearance of life supported by recent discoveries and theories. Accordingly, amino acids and peptides associated with RNA (e.g., ribonucleopeptides) might have existed at the onset of RNA and might have played an important role in the continuous development of self‐sustaining biological systems. Therefore, in this review, I cover the most recent and relevant scientific investigations that propose a better understanding of the ribonucleopeptide world hypothesis and the appearance of life. Finally, I propose two hypotheses for a primitive translation machinery (PTM) that might have been formed of either a T box ribozyme or a ribopolymerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号