首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In vitro and in vivo studies of available and investigational antifungals have broadened our understanding of the pharmacodynamics of these agents as well as the pharmacokinetic/pharmacodynamic characteristics that are associated with efficacy. These data are increasingly being used as surrogate means to answer questions about dosing and administration of antimicrobial agents in order to improve outcomes in patients with invasive fungal infections, as these questions are difficult to answer in clinical trials. The objective of this article is to review the pharmacodynamic activity of widely used classes of antifungal agents, including the azoles, amphotericin B, and the echinocandins, discuss the pharmacokinetic/pharmacodynamic parameters associated with efficacy of these agents in preclinical studies, and describe how this information is being translated into the clinical arena to optimize patient outcomes.  相似文献   

2.

Background  

Pharmacokinetic and pharmacodynamic (PK/PD) indices are increasingly being used in the microbiological field to assess the efficacy of a dosing regimen. In contrast to methods using MIC, PK/PD-based methods reflect in vivo conditions and are more predictive of efficacy. Unfortunately, they entail the use of one PK-derived value such as AUC or Cmax and may thus lead to biased efficiency information when the variability is large. The aim of the present work was to evaluate the efficacy of a treatment by adjusting classical breakpoint estimation methods to the situation of variable PK profiles.  相似文献   

3.
In cancer chemopreventive studies, test agents are typically administered via diet, while the preclinical safety studies normally employ oral gavage dosing. Correspondence in pharmacokinetic and pharmacodynamic profiles between the two dosing approaches cannot be assumed a priori. Sulindac, a non-steroidal anti-inflammatory agent with potential chemopreventive activity, was used to assess effects of the two oral dosing paradigms on its pharmacokinetics and pharmacodynamics. Time-dependent concentrations of sulindac and its sulfone metabolite were determined in plasma and potential target organ, mammary gland. Prostaglandin E(2) was used as a pharmacodynamic biomarker and measured in mammary gland. An inverse linear relationship was detected between pharmacodynamic and pharmacokinetic markers, area under the curve for prostaglandin E(2) levels and sulindac sulfone concentrations, respectively, in the mammary tissue. Marked differences in pharmacokinetics and pharmacodynamics were observed after administration of sulindac by the two oral dosing paradigms. In general, oral gavage resulted in higher peak and lower trough concentrations of sulindac in plasma and mammary tissue, higher area under concentration-time curve in plasma and mammary tissue, and greater effect on prostaglandin E(2) levels than the corresponding diet dosing. This study illustrates potential pitfalls and limitations in trying to generalize based on data obtained with different oral dosing schemes and their extrapolation to potential efficacy and health risks in humans.  相似文献   

4.
The antimicrobial agent cetylpyridinium chloride (CPC) which is used in therapy of oro-pharyngeal infections and for antiseptic treatment of the oral cavity is active against different bacterial species. Determination of the minimal inhibitory concentration (MIC) using the agar dilution technique revealed that the gastric pathogen Helicobacter pylori in vitro is highly susceptible to CPC as indicated by an MIC of 10 microM (3.4 microg ml(-1)) which was significantly lower than the MIC of CPC against other bacterial species, which were analyzed in comparison to H. pylori. Bacteria of the genus Campylobacter, various Streptococcus spp., Staphylococcus aureus and Escherichia coli showed higher MICs ranging from 100 microM to 2 mM. In summary, this finding renders CPC-containing drugs candidates possibly useful for eradication or for the prevention of transmission of the gastric pathogen.  相似文献   

5.
The aim of broth and agar dilution methods is to determine the lowest concentration of the assayed antimicrobial agent (minimal inhibitory concentration, MIC) that, under defined test conditions, inhibits the visible growth of the bacterium being investigated. MIC values are used to determine susceptibilities of bacteria to drugs and also to evaluate the activity of new antimicrobial agents. Agar dilution involves the incorporation of different concentrations of the antimicrobial substance into a nutrient agar medium followed by the application of a standardized number of cells to the surface of the agar plate. For broth dilution, often determined in 96-well microtiter plate format, bacteria are inoculated into a liquid growth medium in the presence of different concentrations of an antimicrobial agent. Growth is assessed after incubation for a defined period of time (16-20 h) and the MIC value is read. This protocol applies only to aerobic bacteria and can be completed in 3 d.  相似文献   

6.
Patients with burn injuries are at high risk of developing invasive fungal infections leading to increased morbidity and mortality. Burn patients undergo major physiologic changes, which produce significant alterations in the pharmacokinetics and pharmacodynamics of antimicrobial agents. These changes result from the breakdown of the body’s natural barriers to infection and the systemic responses that subsequently ensue after burn injury, including systemic inflammatory responses, third spacing, and development of a hypermetabolic state. Severe burn injuries often lead to larger volumes of distribution and increased drug clearance. Limited data are available to guide the clinician in optimizing the dosing regimen of antifungals in patients with burn injuries. We present a review of antifungal pharmacokinetics and describe how these properties can be used to design rational therapeutic regimens tailored to the pharmacodynamic alterations characteristic of burn patients.  相似文献   

7.
BackgroundThere is a continued need to develop effective and safe treatments for visceral leishmaniasis (VL). Preclinical studies on pharmacokinetics and pharmacodynamics of anti-infective agents, such as anti-bacterials and anti-fungals, have provided valuable information in the development and dosing of these agents. The aim of this study was to characterise the pharmacokinetic and pharmacodynamic properties of the anti-leishmanial drugs AmBisome and miltefosine in a preclinical disease model of VL.Methodology / Principal findingsBALB/c mice were infected with L. donovani (MHOM/ET/67/HU3) amastigotes. Groups of mice were treated with miltefosine (orally, multi-dose regimen) or AmBisome (intravenously, single dose regimen) or left untreated as control groups. At set time points groups of mice were killed and plasma, livers and spleens harvested. For pharmacodynamics the hepatic parasite burden was determined microscopically from tissue impression smears. For pharmacokinetics drug concentrations were measured in plasma and whole tissue homogenates by LC-MS. Unbound drug concentrations were determined by rapid equilibrium dialysis. Doses exerting maximum anti-leishmanial effects were 40 mg/kg for AmBisome and 150 mg/kg (cumulatively) for miltefosine. AmBisome displayed a wider therapeutic range than miltefosine. Dose fractionation at a total dose of 2.5 mg/kg pointed towards concentration-dependent anti-leishmanial activity of AmBisome, favouring the administration of large doses infrequently. Protein binding was >99% for miltefosine and amphotericin B in plasma and tissue homogenates.Conclusion / SignificanceUsing a PK/PD approach we propose optimal dosing strategies for AmBisome. Additionally, we describe pharmacokinetic and pharmacodynamic properties of miltefosine and compare our findings in a preclinical disease model to available knowledge from studies in humans. This approach also presents a strategy for improved use of animal models in the drug development process for VL.  相似文献   

8.
Antimicrobial susceptibility testing (AST) is performed to assess the in vitro activity of antimicrobial agents against various bacteria. The AST results, which are expressed as minimum inhibitory concentrations (MICs) are used in research for antimicrobial development and monitoring of resistance development and in the clinical setting for antimicrobial therapy guidance. Dalbavancin is a semi-synthetic lipoglycopeptide antimicrobial agent that was approved in May 2014 by the Food and Drug Administration (FDA) for the treatment of acute bacterial skin and skin structure infections caused by Gram-positive organisms. The advantage of dalbavancin over current anti-staphylococcal therapies is its long half-life, which allows for once-weekly dosing. Dalbavancin has activity against Staphylococcus aureus (including both methicillin-susceptible S. aureus [MSSA] and methicillin-resistant S. aureus [MRSA]), coagulase-negative staphylococci, Streptococcus pneumoniae, Streptococcus anginosus group, β-hemolytic streptococci and vancomycin susceptible enterococci. Similar to other recent lipoglycopeptide agents, optimization of CLSI and ISO broth susceptibility test methods includes the use of dimethyl sulfoxide (DMSO) as a solvent when preparing stock solutions and polysorbate 80 (P80) to alleviate adherence of the agent to plastic. Prior to the clinical studies and during the initial development of dalbavancin, susceptibility studies were not performed with the use of P-80 and MIC results tended to be 2-4 fold higher and similarly higher MIC results were obtained with the agar dilution susceptibility method. Dalbavancin was first included in CLSI broth microdilution methodology tables in 2005 and amended in 2006 to clarify use of DMSO and P-80. The broth microdilution (BMD) procedure shown here is specific to dalbavancin and is in accordance with the CLSI and ISO methods, with step-by-step detail and focus on the critical steps added for clarity.  相似文献   

9.
10.
Etimicin is a novel fourth generation semisynthetic aminoglycoside. It has good antimicrobial activity against both gram-positive and gram-negative bacterial infections and also against aminoglycoside resistant strains. In the present study, in vitro antibacterial activity of etimicin was determined by minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time kill curve tests against type strains and 407 clinical isolates (obtained in a surviellance study), in comparison to other aminoglycosides. Test results revealed that etimicin has potential antimicrobial activity and MIC, MBC values for etimicin were low compared to other aminoglycosides. In MBC test etimicin has exhibited potential bactericidal effect ranging from 0.25 to 2?mg/L. The time kill-curve study further demonstrated the rapid, concentration dependent killing and comparative study showed etimicin to exhibit long and effective bactericidal activity over amikacin. The interesting fact is that most of the tested aminoglycoside resistant clinical isolates were susceptible to etimicin. In view of its potent in vitro antibacterial activity and efficacy profiles, it can be concluded that etimicin can be a potent injectable agent for the treatment of severe bacterial infections.  相似文献   

11.
AIMS: The purpose of this study was to compare the efficacy, in terms of bacterial biofilm penetration and killing, of alkaline hypochlorite (pH 11) and chlorosulfamate (pH 5.5) formulations. METHODS AND RESULTS: Two species biofilms of Pseudomonas aeruginosa and Klebsiella pneumoniae were grown by flowing a dilute medium over inclined stainless steel slides for 6 d. Microelectrode technology was used to measure concentration profiles of active chlorine species within the biofilms in response to treatment at a concentration of 1000 mg total chlorine l(-1). Chlorosulfamate formulations penetrated biofilms faster than did hypochlorite. The mean penetration time into approximately 1 mm-thick biofilms for chlorosulfamate (6 min) was only one-eighth as long as for the same concentration of hypochlorite (48 min). Chloride ion penetrated biofilms rapidly (5 min) with an effective diffusion coefficient in the biofilm that was close to the value for chloride in water. Biofilm bacteria were highly resistant to killing by both antimicrobial agents. Biofilms challenged with 1000 mg l(-1) alkaline hypochlorite or chlorosulfamate for 1 h experienced 0.85 and 1.3 log reductions in viable cell numbers, respectively. Similar treatment reduced viable numbers of planktonic bacteria to non-detectable levels (log reduction greater than 6) within 60 s. Aged planktonic and resuspended laboratory biofilm bacteria were just as susceptible to hypochlorite as fresh planktonic cells. CONCLUSION: Chlorosulfamate transport into biofilm was not retarded whereas hypochlorite transport clearly was retarded. Superior penetration by chlorosulfamate was hypothesized to be due to its lower capacity for reaction with constituents of the biofilm. Poor biofilm killing despite direct measurement of effective physical penetration of the antimicrobial agent into the biofilm demonstrates that bacteria in the biofilm are protected by some mechanism other than simple physical shielding by the biofilm matrix. SIGNIFICANCE AND IMPACT OF THE STUDY: This study lends support to the theory that the penetration of antimicrobial agents into microbial biofilms is controlled by the reactivity of the antimicrobial agent with biofilm components. The finding that chlorine-based biocides can penetrate, but fail to kill, bacteria in biofilms should motivate the search for other mechanisms of protection from killing by antimicrobial agents in biofilms.  相似文献   

12.
Evolution of antibiotic resistance (AR) is increasingly perceived as a major clinical problem. The use of bactericidal antibiotics may protect against this, to some extent, by eradication of the pathogen, but the borders between cidal and inhibitory activity in the patient are often blurred. In addition, there are clinical reasons why eradication of the pathogen may not always be desirable. Antibiotic dosing schedules are currently driven by the perception that T > MIC and AUIC are the main predictors of outcome for time-dependent and concentration-dependent antibiotics, respectively. In the context of protecting against development of resistance in the pathogen however, peak antibiotic concentration and the concept of mutant prevention concentrations may be more important. The role of post-antibiotic and sub-MIC effects is more conjectural. Considerations of mechanisms of resistance and their relationship to antibiotic dosing schedules will also be highlighted. Lastly, the relevance of all this to the development of resistance in the normal bacterial flora will be discussed.  相似文献   

13.
T-cell redirecting bispecific antibodies (bsAbs) or antibody-derived agents that combine tumor antigen recognition with CD3-mediated T cell recruitment are highly potent tumor-killing molecules. Despite the tremendous progress achieved in the last decade, development of such bsAbs still faces many challenges. This work aimed to develop a mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) modeling framework that can be used to assist the development of T-cell redirecting bsAbs. A Target cell-Biologics-Effector cell (TBE) complex-based cell killing model was developed using in vitro and in vivo data, which incorporates information on binding affinities of bsAbs to CD3 and target receptors, expression levels of CD3 and target receptors, concentrations of effector and target cells, as well as respective physiological parameters. This TBE model can simultaneously evaluate the effect of multiple system-specific and drug-specific factors on the T-cell redirecting bsAb exposure–response relationship on a physiological basis; it reasonably captured multiple reported in vitro cytotoxicity data, and successfully predicted the effect of some key factors on in vitro cytotoxicity assays and the efficacious dose of blinatumomab in humans. The mechanistic nature of this model uniquely positions it as a knowledge-based platform that can be readily expanded to guide target selection, drug design, candidate selection and clinical dosing regimen projection, and thus support the overall discovery and development of T-cell redirecting bsAbs.  相似文献   

14.
An in vitro pharmacokinetic/pharmacodynamic perfusion model that simulates a two-compartment open model of serum drug concentration-time profiles following intravenous bolus injection and infusion was developed and mathematically described. In the present apparatus model, flow was kept in a one-way mode to avoid liquid traffic, and the washout effect seen in dilution models was overcome by embedding the tested bacteria in low melting point agarose gel. The validity of the equations and the reproducibility of the apparatus model were ascertained by simulating the concentration-time profiles of cefazolin and fosfomycin by substitution of their pharmacokinetic parameters obtained from humans for the equations. An empirical regimen 1X(q24h) of 1 g with cefazolin administered by intravenous infusion effectively killed a Staphylococcus aureus strain. The same regimen with fosfomycin produced a marked kill-curve with a fosfomycin-susceptible enterohaemorrhagic Escherichia coli O157:H7, whereas considerable regrowth was observed with a resistant strain. These results indicated that the present model was able to provide a convenient and reliable method for evaluating the efficacy of antimicrobial agents administered by intravenous infusion.  相似文献   

15.
Animal infection models in the pharmacokinetic/pharmacodynamic (PK/PD) evaluation of antimicrobial therapy serve an important role in preclinical assessments of new antibiotics, dosing optimization for those that are clinically approved, and setting or confirming susceptibility breakpoints. The goal of animal model studies is to mimic the infectious diseases seen in humans to allow for robust PK/PD studies to find the optimal drug exposures that lead to therapeutic success. The PK/PD index and target drug exposures obtained in validated animal infection models are critical components in optimizing dosing regimen design in order to maximize efficacy while minimize the cost and duration of clinical trials. This review outlines the key components in animal infection models which have been used extensively in antibiotic discovery and development including PK/PD analyses.  相似文献   

16.
A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two-dimensional, finite-element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid-liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid-liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long-term investigations, making this approach preferable to conventional gel-stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel.  相似文献   

17.
The penetration ability of 12 antimicrobial agents, including antibiotics and biocides, was determined against biofilms of B. cereus and P. fluorescens using a colony biofilm assay. The surfactants benzalkonium chloride (BAC) and cetyltrimethyl ammonium bromide (CTAB), and the antibiotics ciprofloxacin and streptomycin were of interest due to their distinct activities. Erythromycin and CTAB were retarded by the presence of biofilms, whereas ciprofloxacin and BAC were not. The removal and killing efficacies of these four agents was additionally evaluated against biofilms formed in microtiter plates. The most efficient biocide was CTAB for both bacterial biofilms. Ciprofloxacin was the best antibiotic although none of the selected antimicrobial agents led to total biofilm removal and/or killing. Comparative analysis of the results obtained with colony biofilms and microtiter plate biofilms show that although extracellular polymeric substances and the biofilm structure are considered a determining factor in biofilm resistance, the ability of an antimicrobial agent to penetrate a biofilm is not correlated with its killing or removal efficiency. Also, the results reinforce the role of an appropriate antimicrobial selection as a key step in the design of disinfection processes for biofilm control.  相似文献   

18.
Over the past six years, many new agents have become available for the treatment of bacterial central nervous system (CNS) infections. Certain principles guide the use of these agents for CNS infections: first, an antimicrobial agent must be able to penetrate the CNS to be effective; second, the CNS is a “relatively immunoincompetent site” so that an antimicrobial must achieve levels within the CNS capable of killing the offending bacterium. The lack of efficacy of chloramphenicol for meningitis due to gram-negative aerobes is probably due to its failure to achieve such killing levels, whereas the success of the newer cephalosporins, such as cefotaxime and ceftriaxone, is due to their very high killing activity against these organisms. Penicillin remains the first choice for pneumococcal and meningococcal meningitis. Ampicillin plus chloramphenicol is still recommended as initial therapy for meningitis due to Hemophilus influenzae. The newer cephalosporins are now the first choice for the treatment of meningitis due to many gram-negative bacilli. Trimethoprim-sulfamethoxazole may also be useful in some of these infections and those due to Listeria monocytogenes. In the treatment of severe CNS infections, a team approach is advised to ensure optimal therapy.  相似文献   

19.
A mathematical model of the action of antimicrobial agents on bacterial biofilms is presented. The model includes the fluid dynamics in and around the biofilm, advective and diffusive transport of two chemical constituents and the mechanism of physiological resistance. Although the mathematical model applies in three dimensions, we present two-dimensional simulations for arbitrary biofilm domains and various dosing strategies. The model allows the prediction of the spatial evolution of bacterial population and chemical constituents as well as different dosing strategies based on the fluid motion. We find that the interaction between the nutrient and the antimicrobial agent can reproduce survival curves which are comparable to other model predictions as well as experimental results. The model predicts that exposing the biofilm to low concentration doses of antimicrobial agent for longer time is more effective than short time dosing with high antimicrobial agent concentration. The effects of flow reversal and the roughness of the fluid/biofilm are also investigated. We find that reversing the flow increases the effectiveness of dosing. In addition, we show that overall survival decreases with increasing surface roughness.  相似文献   

20.
Aldridge KE 《Anaerobe》2002,8(6):295-299
The exposure of bacteria to various groups of antimicrobials at different concentrations can produce damage to the bacteria that persists even after removal of the antimicrobial agent. The post antibiotic effect (PAE) of beta-lactams on aerobic gram-negative bacilli is relatively short (<1 h), however, little information is available regarding anaerobic gram-negative bacilli. We studied the PAE of ceftizoxime, ampicillin-sulbactam, ticarcillin-clavulanate, cefoxitin, and ceftriaxone against strains of Bacteroides fragilis and B. thetaiotaomicron at antimicrobial concentrations 4x, 8x, and 16x the MIC values using colony count determinations of treated and untreated cultures. Against B. fragilis H931, ceftizoxime-induced PAE values were 2 h, 3 h 24 min, and 11 h 36 min at 4xMIC, 8xMIC, and 16xMIC while for the B. thetaiotaomicron isolates PAEs ranged from 2 h 27 min to 6 h 12 min at the same concentrations. Cefoxitin PAE values were 3 h 6 min and 2 h 18 min for the clinical isolates at 16xMIC and 3 h 24 min and 1 h 12 min against the laboratory strains at 16xMIC respectively, and for ceftriaxone 1 h 12 min and 5 h 12 min, respectively, for the B. thetaiotaomicron D933 and B. fragilis H931 strains at 16xMIC. With ampicillin-sulbactam, the longest PAE values were observed at 16xMIC with all the test isolates of B. fragilis and B. thetaiotaomicron. PAE values induced by ticarcillin-clavulanate overall were the shortest for the two clinical isolates. These studies indicate substantial PAE values for beta-lactams against selected anaerobes which may be an important factor in the dosing regimen of these test agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号