首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to investigate biofouling problems, the fundamental behaviors of initial bacterial adhesion and biofilm development on four different nanofiltration (NF) membranes were evaluated using Pseudomonas aeruginosa PAO1 as a model bacterial strain. Initial cell adhesion was considerably higher on an aromatic polyamide-based NF membrane with a hydrophobic and rough surface, whereas cell aggregation on a polypiperazine-based NF membrane with a relatively hydrophilic and smooth surface was lower. Moreover, significant differences in the structural heterogeneity of the biofilms were observed among the four NF membranes. This study shows that the surface roughness and hydrophobicity of a membrane play an important role in determining initial cell adhesion, aggregation and favorable localization sites for colony formation. In addition, it was found that biofilm development was strongly influenced by the surface morphology of a membrane.  相似文献   

2.
Application of environmentally friendly enzymes to remove thin-film composite (TFC) reverse osmosis (RO) membrane biofoulants without changing the physico-chemical properties of the RO surface is a challenging and new concept. Eight enzymes from Novozyme A/S were tested using a commercially available biofouling-resistant TFC polyamide RO membrane (BW30, FilmTech Corporation, Dow Chemical Co.) without filtration in a rotating disk reactor system operated for 58 days. At the end of the operation, the accumulated biofoulants on the TFC RO surfaces were treated with the three best enzymes, Subtilisin protease and lipase; dextranase; and polygalacturonase (PG) based enzymes, at neutral pH (~7) and doses of 50, 100, and 150 ppm. Contact times were 18 and 36 h. Live/dead staining, epifluorescence microscopy measurements, and 5 μm thick cryo-sections of enzyme and physically treated biofouled membranes revealed that Subtilisin protease- and lipase-based enzymes at 100 ppm and 18 h contact time were optimal for removing most of the cells and proteins from the RO surface. Culturable cells inside the biofilm declined by more than five logs even at the lower dose (50 ppm) and shorter incubation period (18 h). Subtilisin protease- and lipase-based enzyme cleaning at 100 ppm and for 18 h contact time restored the hydrophobicity of the TFC RO surface to its virgin condition while physical cleaning alone resulted in a 50° increase in hydrophobicity. Moreover, at this optimum working condition, the Subtilisin protease- and lipase-based enzyme treatment of biofouled RO surface also restored the surface roughness measured with atomic force microscopy and the mass percentage of the chemical compositions on the TFC surface estimated with X-ray photoelectron spectroscopy to its virgin condition. This novel study will encourage the further development and application of enzymes to remove biofoulants on the RO surface without changing its surface properties.  相似文献   

3.
Mun S  Baek Y  Kim C  Lee YW  Yoon J 《Biofouling》2012,28(6):627-633
Physical cleaning and/or chemical cleaning have been generally used to control biofouling in the reverse osmosis (RO) process. However, conventional membrane cleaning methods to control biofouling are limited due to the generation of by-products and the potential for damage to the RO membranes. In this study, supercritical carbon dioxide (SC CO(2)) treatment, an environmentally friendly technique, was introduced to control biofouling in the RO process. SC CO(2) (100 bar at 35°C) treatment was performed after biofouling was induced on a commercial RO membrane using Pseudomonas aeruginosa PA01 GFP as a model bacterial strain. P. aeruginosa PA01 GFP biofilm cells were reduced on the RO membrane by >8 log within 30 min, and the permeate flux was sufficiently recovered in a laboratory-scale RO membrane system without any significant damage to the RO membrane. These results suggest that SC CO(2) treatment is a promising alternative membrane cleaning technique for biofouling in the RO process.  相似文献   

4.
A new, thin film, biofouling resistant, nanofiltration (NF) membrane was fabricated with two key characteristics, viz. a low rate of silver (Ag) release and long-lasting antibacterial properties. In the new approach, nanoparticles were embedded completely in a polymeric thin-film layer. A comparison was made between the new thin-film composite (TFC), NF membrane and thin-film nanocomposite (TFN), and antibacterial NF membranes. Both types of NF membrane were fabricated by interfacial polymerization on a polysulphone sublayer using m-phenylenediamine and trimesoyl chloride as an amine monomer and an acid chloride monomer, respectively. Energy dispersive X-ray (EDX) microanalysis demonstrated the presence of Ag nanoparticles. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to study the cross-sectional and surface morphological properties of the NF membranes. Permeability and salt rejection were tested using a dead-end filtration cell. Ag leaching from the membranes was measured using inductively coupled mass spectrometry (ICP–MS). Morphological studies showed that the TFC NF membranes had better thin-film formation (a more compact structure and a smoother surface) than TFN NF membranes. Performance experiments on TFC NF membranes revealed that permeability was good, without sacrificing salt rejection. The antibacterial properties of the fabricated membranes were tested using the disk diffusion method and viable plate counts. The antibiofouling properties of the membranes were examined by measuring the quantity of bacterial cells released from the biofilm formed (as a function of the amount of biofilm present). A more sensitive surface was observed compared to that of a typical antibacterial NF membrane. The Ag leaching rates were low, which will likely result in long-lasting antibacterial and biofouling resistant properties.  相似文献   

5.
Abstract

This study determined economic non-destructive methods to assess biofouling in point of use reverse osmosis (RO) membrane treatment systems. Three parallel household RO membrane units were operated under controlled feed water conditions to promote biofouling, inorganic fouling and a combination of both. Operational and biological parameters were monitored throughout the systems’ lifespan. Membrane autopsies assessed the degree and type of fouling. Statistical models determined statistically relevant parameters for fouling types that were validated with membrane autopsies. Permeate flow rates decreased differently with biofouling vs inorganic fouling. Large increases in permeate conductivity were noted in membranes suffering from biofouling and not in inorganically fouled membranes. The concentration of cell clumps from detached biofilm in the retentate increased in membranes experiencing biofouling and no increase was seen for inorganically fouled membranes. A combination of these methods could be used to conveniently assess the types of fouling experienced by RO systems.  相似文献   

6.
In an earlier study, it was shown that biofouling predominantly is a feed spacer channel problem. In this article, pressure drop development and biofilm accumulation in membrane fouling simulators have been studied without permeate production as a function of the process parameters substrate concentration, linear flow velocity, substrate load and flow direction. At the applied substrate concentration range, 100–400 μg l?1 as acetate carbon, a higher concentration caused a faster and greater pressure drop increase and a greater accumulation of biomass. Within the range of linear flow velocities as applied in practice, a higher linear flow velocity resulted in a higher initial pressure drop in addition to a more rapid and greater pressure drop increase and biomass accumulation. Reduction of the linear flow velocity resulted in an instantaneous reduction of the pressure drop caused by the accumulated biomass, without changing the biofilm concentration. A higher substrate load (product of substrate concentration and flow velocity) was related to biomass accumulation. The effect of the same amount of accumulated biomass on the pressure drop increase was related to the linear flow velocity. A decrease of substrate load caused a gradual decline in time of both biomass concentration and pressure drop increase. It was concluded that the pressure drop increase over spiral wound reverse osmosis (RO) and nanofiltration (NF) membrane systems can be reduced by lowering both substrate load and linear flow velocity. There is a need for RO and NF systems with a low pressure drop increase irrespective of the biomass formation. Current efforts to control biofouling of spiral wound membranes focus in addition to pretreatment on membrane improvement. According to these authors, adaptation of the hydrodynamics, spacers and pressure vessel configuration offer promising alternatives. Additional approaches may be replacing heavily biofouled elements and flow direction reversal.  相似文献   

7.
Physical cleaning and/or chemical cleaning have been generally used to control biofouling in the reverse osmosis (RO) process. However, conventional membrane cleaning methods to control biofouling are limited due to the generation of by-products and the potential for damage to the RO membranes. In this study, supercritical carbon dioxide (SC CO2) treatment, an environmentally friendly technique, was introduced to control biofouling in the RO process. SC CO2 (100 bar at 35°C) treatment was performed after biofouling was induced on a commercial RO membrane using Pseudomonas aeruginosa PA01 GFP as a model bacterial strain. P. aeruginosa PA01 GFP biofilm cells were reduced on the RO membrane by >8 log within 30 min, and the permeate flux was sufficiently recovered in a laboratory-scale RO membrane system without any significant damage to the RO membrane. These results suggest that SC CO2 treatment is a promising alternative membrane cleaning technique for biofouling in the RO process.  相似文献   

8.
Biofouling is a serious problem on filter membranes of water purification systems due to formation of bacterial biofilms, which can be detrimental to the membrane performance. Biofouling occurs on membrane surface and therefore greatly influences the physical and chemical aspects of the surface. Several membranes including microfiltration, ultrafiltration, and reverse osmosis (RO) membranes were used to learn about the anti-biofouling properties of vanillin affecting the membrane performances. Vanillin has been recognized as a potential quorum quenching compound for Aeromonas hydrophila biofilms. The initial attachment and dynamics of biofilm growth were monitored using scanning electron microscopy and confocal laser scanning microscopy. Biofilm quantities were measured using a plate count method and total protein determinations. Vanillin addition was effective in the prevention of biofilm formation on the tested membrane surfaces. Among the membranes, RO membranes made with cellulose acetate showed the most substantial reduction of biofilm formation by addition of vanillin. The biofilm reduction was confirmed by the results of surface coverage, biomass and protein accumulation. The HPLC spectrum of the spent culture with vanillin addition showed that vanillin may interfere with quorum sensing molecules and thus prevent the formation of the biofilms.  相似文献   

9.
Biofouling remains a key challenge for membrane-based water treatment systems. This study investigated the dispersal potential of the nitric oxide (NO) donor compound, PROLI NONOate, on single- and mixed-species biofilms formed by bacteria isolated from industrial membrane bioreactor and reverse osmosis (RO) membranes. The potential of PROLI NONOate to control RO membrane biofouling was also examined. Confocal microscopy revealed that PROLI NONOate exposure induced biofilm dispersal in all but two of the bacteria tested and successfully dispersed mixed-species biofilms. The addition of 40 μM PROLI NONOate at 24-h intervals to a laboratory-scale RO system led to a 92% reduction in the rate of biofouling (pressure rise over a given period) by a bacterial community cultured from an industrial RO membrane. Confocal microscopy and extracellular polymeric substances (EPS) extraction revealed that PROLI NONOate treatment led to a 48% reduction in polysaccharides, a 66% reduction in proteins, and a 29% reduction in microbial cells compared to the untreated control. A reduction in biofilm surface coverage (59% compared to 98%, treated compared to control) and average thickness (20 μm compared to 26 μm, treated compared to control) was also observed. The addition of PROLI NONOate led to a 22% increase in the time required for the RO module to reach its maximum transmembrane pressure (TMP), further indicating that NO treatment delayed fouling. Pyrosequencing analysis revealed that the NO treatment did not significantly alter the microbial community composition of the membrane biofilm. These results present strong evidence for the application of PROLI NONOate for prevention of RO biofouling.  相似文献   

10.
The origin, structure, and composition of biofilms in various compartments of an industrial full-scale reverse-osmosis (RO) membrane water purification plant were analyzed by molecular biological methods. Samples were taken when the RO installation suffered from a substantial pressure drop and decreased production. The bacterial community of the RO membrane biofilm was clearly different from the bacterial community present at other locations in the RO plant, indicating the development of a specialized bacterial community on the RO membranes. The typical freshwater phylotypes in the RO membrane biofilm (i.e., Proteobacteria, Cytophaga-Flexibacter-Bacteroides group, and Firmicutes) were also present in the water sample fed to the plant, suggesting a feed water origin. However, the relative abundances of the different species in the mature biofilm were different from those in the feed water, indicating that the biofilm was actively formed on the RO membrane sheets and was not the result of a concentration of bacteria present in the feed water. The majority of the microorganisms (59% of the total number of clones) in the biofilm were related to the class Proteobacteria, with a dominance of Sphingomonas spp. (27% of all clones). Members of the genus Sphingomonas seem to be responsible for the biofouling of the membranes in the RO installation.  相似文献   

11.
More effective control of membrane biofouling in membrane bioreactors (MBRs) lies in the fundamental understanding of the pioneer microorganisms responsible for surface colonization that leads to biofilm formation. In this study, the composition of the planktonic and sessile microbial communities inhabiting four laboratory-scale MBR systems were compared using amplified ribosomal DNA restriction analysis (ARDRA) and 16S ribosomal DNA gene sequencing. The ARDRA results suggest that the microbial communities on membrane surfaces could be very different from the ones in the suspended biomass. Phylogenetic analysis based on the 16S rRNA gene sequences provided a list of bacteria that might be the pioneers of surface colonization on microfiltration membranes. The results further suggested that research on the mechanisms of cell attachment in such an engineering environment could be critical for future development of appropriate biofouling control strategies.  相似文献   

12.
The influence of membrane surface charge on biofouling community composition during activated sludge filtration in a membrane bioreactor was investigated in this study using polyacrylonitrile-based membranes. Membranes with different surface properties were synthesized by phase inversion followed by a layer-by-layer modification. Various characterization results showed that the membranes differed only in their surface chemical composition and charge, ie two of them were negative, one neutral and one positive. Membrane fouling experiments were performed for 40 days and the biofouling communities were analyzed. PCR-DGGE fingerprinting indicated selective enrichment of bacterial populations from the sludge suspension within the biofilms at any time point. The biofilm community composition seemed to change with time. However, no difference was observed between the biofilm community of differently charged membranes at specific time points. It could be concluded that membrane charges do not play a decisive role in the long-term selection of the key bacterial foulants.  相似文献   

13.
The initial formation and spatiotemporal development of microbial biofilm layers on surfaces of new and clean reverse osmosis (RO) membranes and feed-side spacers were monitored in situ using flow cells placed in parallel with the RO system of a full-scale water treatment plant. The feed water of the RO system had been treated by the sequential application of coagulation, flocculation, sand filtration, ultrafiltration, and cartridge filtration processes. The design of the flow cells permitted the production of permeate under cross-flow conditions similar to those in spiral-wound RO membrane elements of the full-scale system. Membrane autopsies were done after 4, 8, 16, and 32 days of flow-cell operation. A combination of molecular (fluorescence in situ hybridization [FISH], denaturing gradient gel electrophoresis [DGGE], and cloning) and microscopic (field emission scanning electron, epifluorescence, and confocal laser scanning microscopy) techniques was applied to analyze the abundance, composition, architecture, and three-dimensional structure of biofilm communities. The results of the study point out the unique role of Sphingomonas spp. in the initial formation and subsequent maturation of biofilms on the RO membrane and feed-side spacer surfaces.In the water production industry, reverse osmosis (RO) membrane technology is a durable, promising, and much-used separation method. Its application enables the efficient removal of a wide variety of contaminants (i.e., microbial constituents, total dissolved solids, and organic compounds). Feed streams of different qualities (e.g., raw, natural, chemically contaminated or brackish, and seawater) are used to produce high-purity water that is microbiologically safe and biologically stable (15, 25). However, the widespread application of this technology is limited because the current generation of RO filtration units experience biofouling problems (14). The design of so-called “spiral wound” membrane elements and the conditions at the membrane, feed-side spacer, and other internal surfaces within these RO filters make them prone to microbial attachment and the subsequent formation of biofilm layers. A variety of microorganisms are involved in the development of these surface-attached complex structures after prolonged operation of the RO system, depending on the type and concentration of contaminants in the feed water and the type of pretreatment (5, 6, 7, 32, 38). The biofilm occurrence is a principal problem for proper RO system performance. It can lead to blocking of the feed concentrate channel and to clogging of the membrane. Biofilm formation results in an increased energy requirement of the feed water pumps, a lower flux, and a decrease of permeate quality (14). Conventional prevention and/or management strategies of biofouling-caused problems require more frequent chemical cleanings, thereby leading to a shortened membrane life and, ultimately, to a loss of capacity of the water supply plant (3, 14). Finding more effective ways to deal with biofouling problems in the current RO systems still needs more fundamental investigations of all aspects of biofilm formation. Little is known about the microbial community that makes up the biofilm on the membranes. To diagnose biofouling and to choose the most appropriate pretreatment and cleaning strategies, the pressure difference between the inlet and outlet channels and microbial biomass concentrations can be determined (48). Additional microbiological research, such as total cell and heterotrophic plate counts, provides some basic information (12, 23). However, such experiments do not allow for a reliable evaluation of microbial abundance and diversity of species, because the majority of the microorganisms in ecosystems cannot be cultured (21). While knowledge of real biofilm microbial composition is essential in identifying the most effective cleaning protocols, only a few molecular-based microbial diversity studies on RO membrane surfaces are reported (5, 6, 7, 32). In addition, limited data about the formation and development of biofilms over time are available. What little is known comes from laboratory-controlled biofilm monitoring studies using one or a few bacterial strains for biofilm formation (18, 19). These studies, therefore, may not provide a true representation of the RO biofilm problem in situ.In this study, we investigated microbial biofilm formation in an experimental setup similar to an authentic RO system. Using stainless steel flow cells connected in parallel to the reverse osmosis system of a full-scale water treatment plant, the spatiotemporal development of microbial biofilms on the surfaces of new and clean reverse osmosis membranes and feed-side spacers was monitored. The bacteria responsible for the initial colonization and development of the biofilms were identified by various molecular and microscopic techniques.  相似文献   

14.
Laboratory-scale reverse osmosis (RO) flat-sheet systems were used with two parallel flow cells, one treated with cleaning agents and a control (ie undisturbed). The cleaning efforts increased the affinity of extracellular polymeric substances (EPS) to the RO membrane and altered the biofilm surface structure. Analysis of the membrane biofilm community composition revealed the dominance of Proteobacteria. However, within the phylum Proteobacteria, γ-Proteobacteria dominated the cleaned membrane biofilm, while β-Proteobacteria dominated the control biofilm. The composition of the fungal phyla was also altered by cleaning, with enhancement of Ascomycota and suppression of Basidiomycota. The results suggest that repeated cleaning cycles select for microbial groups that strongly attach to the RO membrane surface by producing rigid and adhesive EPS that hampers membrane performance.  相似文献   

15.
The effects of biofilm formation on membrane performance were evaluated for a submerged membrane bioreactor (sMBR) system with six different types of micro- and ultrafiltration membranes (working volume = 19 l). After operation for 24 h the permeability of the membranes with a larger pore size (microfiltration) decreased to that of the membranes with a much smaller pore size (ultrafiltration). Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) confirmed that biofilms could reduce the influence of the membrane surface properties. The chemical oxygen demand (COD) removal efficiency was 95% for the oily wastewater treatment in the sMBR where the filtration process made an important contribution (47% based on feed COD). Significant enhancement in COD removal occurred at the initial filtration stage because of biofilm formation and the dynamic member role of the biofilm layer. Membranes with various pore sizes had approximately the same permeate quality that was attributed to the biofilm on the membrane surfaces. Nevertheless, the ultrafiltration membranes had 43% more COD removal efficiency than the other applied membranes at the beginning of filtration (before biofilm formation) because of the smaller pore sizes and better sieving.  相似文献   

16.
Marine biofouling has severe economic impacts and cyanobacteria play a significant role as early surface colonizers. Despite this fact, cyanobacterial biofilm formation studies in controlled hydrodynamic conditions are scarce. In this work, computational fluid dynamics was used to determine the shear rate field on coupons that were placed inside the wells of agitated 12-well microtiter plates. Biofilm formation by three different cyanobacterial strains was assessed at two different shear rates (4 and 40 s−1) which can be found in natural ecosystems and using different surfaces (glass and perspex). Biofilm formation was higher under low shear conditions, and differences obtained between surfaces were not always statistically significant. The hydrodynamic effect was more noticeable during the biofilm maturation phase rather than during initial cell adhesion and optical coherence tomography showed that different shear rates can affect biofilm architecture. This study is particularly relevant given the cosmopolitan distribution of these cyanobacterial strains and the biofouling potential of these organisms.  相似文献   

17.
Pectinolytic enzymes of oral spirochetes from humans.   总被引:9,自引:4,他引:5       下载免费PDF全文
The kinetics of adhesion of a Mycobacterium sp. to cellulose diacetate reverse-osmosis membranes is described. This Mycobacterium sp. (strain BT2-4) was previously implicated in the initial stages of reverse-osmosis membrane biofouling at a wastewater reclamation facility. Adhesion of BT2-4 cells to the cellulose diacetate membrane surfaces occurred within 1 to 2 h at 30 degrees C and exhibited saturation-type kinetics which conformed closely to the Langmuir adsorption isotherm (Pearson r correlation coefficient = 0.977), a mathematical expression describing the partitioning of substances between a solution and solid-liquid interface. This suggests that the cellulose diacetate membrane surfaces may possess a finite number of available binding sites to which the mycobacteria can adhere. Treatment of the attached mycobacteria with different enzymes suggested that cell surface polypeptides, alpha-1, 4- or alpha-1,6-linked glucan polymers, and carboxyl ester bond-containing substances (possibly peptidoglycolipids) may be involved in mycobacterial adhesion. The possible implication of these findings for reverse-osmosis membrane biofouling are discussed.  相似文献   

18.
The effects of biofilm formation on membrane performance were evaluated for a submerged membrane bioreactor (sMBR) system with six different types of micro- and ultrafiltration membranes (working volume=19 l). After operation for 24 h the permeability of the membranes with a larger pore size (microfiltration) decreased to that of the membranes with a much smaller pore size (ultrafiltration). Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) confirmed that biofilms could reduce the influence of the membrane surface properties. The chemical oxygen demand (COD) removal efficiency was 95% for the oily wastewater treatment in the sMBR where the filtration process made an important contribution (47% based on feed COD). Significant enhancement in COD removal occurred at the initial filtration stage because of biofilm formation and the dynamic member role of the biofilm layer. Membranes with various pore sizes had approximately the same permeate quality that was attributed to the biofilm on the membrane surfaces. Nevertheless, the ultrafiltration membranes had 43% more COD removal efficiency than the other applied membranes at the beginning of filtration (before biofilm formation) because of the smaller pore sizes and better sieving.  相似文献   

19.
The objective of this study was to investigate the microbial community structure of the biofouling film formed on hollow-fiber membrane surfaces in the submerged membrane bioreactor (SMBR) with a nitrification-denitrification process. In this experiment, aeration was conducted intermittently (60 min off, 90 min on) cyclic anoxic and oxic conditions in the SMBR. The dominant quinone types of biofilm on the membrane surface in an intermittently aerated SMBR were ubiquinone (UQs)-8, -10, followed by menaquinones (MKs)-8(H4), -8(H2) and -7, but those of suspended microorganisms were UQ-8, UQ-10 followed by MKs-8, -9(H4) and -6. The change in quinone profiles of biofilm on the membrane surface suggested that UQ-9, MK-7, MK-8(H2) and MK-8(H4) contributed to microbiological fouling in the intermittently aerated SMBR treating domestic wastewater. The microbial diversities of suspended microorganisms and biofilm, calculated based on the composition of all quinones, were 9.5 and 10.9, respectively.  相似文献   

20.
The presence of microorganisms on material surfaces can have a profound effect on materials performance. Surface-associated microbial growth, i.e. a biofilm, is known to instigate biofouling. The presence of biofilms may promote interfacial physico-chemical reactions that are not favored under abiotic conditions. In the case of metallic materials, undesirable changes in material properties due to a biofilm (or a biofouling layer) are referred to as biocorrosion or microbially influenced corrosion (MIC). Biofouling and biocorrosion occur in aquatic and terrestrial habitats varying in nutrient content, temperature, pressure and pH. Interfacial chemistry in such systems reflects a wide variety of physiological activities carried out by diverse microbial populations thriving within biofilms. Biocorrosion can be viewed as a consequence of coupled biological and abiotic electron-transfer reactions, i.e. redox reactions of metals, enabled by microbial ecology. Microbially produced extracellular polymeric substances (EPS), which comprise different macromolecules, mediate initial cell adhesion to the material surface and constitute a biofilm matrix. Despite their unquestionable importance in biofilm development, the extent to which EPS contribute to biocorrosion is not well-understood. This review offers a current perspective on material/microbe interactions pertinent to biocorrosion and biofouling, with EPS as a focal point, while emphasizing the role atomic force spectroscopy and mass spectrometry techniques can play in elucidating such interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号