首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel hybrid system composed of biological components and synthetic polymer, thylakoid/polycation complex, has been formed and studied. Effects of complex formation on the structure, electrostatics and functioning of thylakoid membranes have been examined. Thylakoids from bean leaves were used to form complexes with polycation polyallylamine hydrochloride (PAAH) in two systems: (i) thylakoid/polycation complexes formed in an aqueous bulk phase, and (ii) immobilized thylakoid/polycation planar complexes. Immobilized on a solid substrate surface, thylakoid/polycation complexes were prepared using layer-by-layer stepwise alternate adsorption technique, i.e., via the sequential alternate adsorption of thylakoids and polycation molecules. The morphology of built up structures was investigated by scanning electron microscopy. Light-induced electron transport in chloroplasts was studied by the electron paramagnetic resonance (EPR) method. Spin probe technique was employed to study the structural and electrostatic characteristics of thylakoid membranes. We have found that efficiency of light-induced electron transport in thylakoid membranes and membrane structure were not changed noticeably by PAAH binding to thylakoids in a wide range of PAAH concentrations. The data obtained indicate the physiologically-soft character of polycation interactions with thylakoid membranes and demonstrate effectiveness of interfacial self-assembly approach to fabrication of complex planar functional nanostructures from biological components and synthetic polymers.  相似文献   

2.
A novel hybrid system composed of biological components and synthetic polymer, thylakoid/polycation complex, has been formed and studied. Effects of complex formation on the structure, electrostatics and functioning of thylakoid membranes have been examined. Thylakoids from bean leaves were used to form complexes with polycation polyallylamine hydrochloride (PAAH) in two systems: (i) thylakoid/polycation complexes formed in an aqueous bulk phase, and (ii) immobilized thylakoid/polycation planar complexes. Immobilized on a solid substrate surface, thylakoid/polycation complexes were prepared using layer-by-layer stepwise alternate adsorption technique, i.e., via the sequential alternate adsorption of thylakoids and polycation molecules. The morphology of built up structures was investigated by scanning electron microscopy. Light-induced electron transport in chloroplasts was studied by the electron paramagnetic resonance (EPR) method. Spin probe technique was employed to study the structural and electrostatic characteristics of thylakoid membranes. We have found that efficiency of light-induced electron transport in thylakoid membranes and membrane structure were not changed noticeably by PAAH binding to thylakoids in a wide range of PAAH concentrations. The data obtained indicate the physiologically-soft character of polycation interactions with thylakoid membranes and demonstrate effectiveness of interfacial self-assembly approach to fabrication of complex planar functional nanostructures from biological components and synthetic polymers.  相似文献   

3.
A mutant of Arabidopsis thaliana, deficient in activity of the chloroplast n-6 desaturase, accumulated high levels of C16:1 and C18:1 lipids and had correspondingly reduced levels of polyunsaturated lipids. The altered lipid composition of the mutant had pronounced effects on chloroplast ultrastructure, thylakoid membrane protein and chlorophyll content, electron transport rates, and the thermal stability of the photosynthetic membranes. The change in chloroplast ultrastructure was due to a 48% decrease in the amount of appressed membranes that was not compensated for by an increased amount of nonappressed membrane. This resulted in a net loss of 36% of the thylakoid membrane per chloroplast and a corresponding reduction in chlorophyll and protein content. Electrophoretic analysis of the chlorophyll-protein complexes further revealed a small decrease in the amount of light-harvesting complex. Relative levels of whole chain and protosystem II electron transport rates were also reduced in the mutant. In addition, the mutation resulted in enhanced thermal stability of photosynthetic electron transport. These observations suggest a central role of polyunsaturated lipids in determining chloroplast structure and maintaining normal photosynthetic function and demonstrate that lipid unsaturation directly affects the thermal stability of photosynthetic membranes.  相似文献   

4.
To understand whether fusions of thylakoid membranes from the parental chloroplasts occurred during zygote formation in Chlamydomonas reinhardtii, we performed an ultrastructural analysis of the zygotes produced by crossing mutants lacking photosystem I or II protein complexes, in the absence of de novo chloroplast protein synthesis. Thylakoid membranes from each parent could be distinguished on thin sections due to their organization in "supergrana" in mutants lacking photosystem I centers, by freeze-fracturing due to the absence of most of the exoplasmic-face (EF) particles in mutants lacking photosystem II centers, by immunocytochemistry using antibodies directed against photosystem II subunits. We demonstrate that a fusion of the thylakoid membranes occurred during zygote formation approximately 15 h after mating. These fusions allowed a lateral redistribution of the thylakoid membrane proteins. These observations provide the structural basis for the restoration of photosynthetic electron flow in the mature zygote that we observed in fluorescence induction experiments.  相似文献   

5.
The chloroplast thylakoid membrane of green plants is organized in stacked grana membranes and unstacked stroma membranes. We investigated the structural organization of Photosystem II (PSII) in paired grana membrane fragments by transmission electron microscopy. The membrane fragments were obtained by a short treatment of thylakoid membranes with the mild detergent n-dodecyl-alpha, d-maltoside and are thought to reflect the grana membranes in a native state. The membranes frequently show crystalline macrodomains in which PSII is organized in rows spaced by either 26.3 nm (large-spaced crystals) or 23 nm (small-spaced crystals). The small-spaced crystals are less common but better ordered. Image analysis of the crystals by an aperiodic approach revealed the precise positions of the core parts of PSII in the lattices, as well as features of the peripheral light-harvesting antenna. Together, they indicate that the so-called C(2)S(2) and C(2)S(2)M supercomplexes form the basic motifs of the small-spaced and large-spaced crystals, respectively. An analysis of a pair of membranes with a well-ordered large-spaced crystal reveals that many PSII complexes in one layer face only light-harvesting complexes (LHCII) in the other layer. The implications of this type of organization for the efficient transfer of excitation energy from LHCII to PSII and for the stacking of grana membranes are discussed.  相似文献   

6.
The chloroplast is the chlorophyll‐containing organelle that produces energy through photosynthesis. Within the chloroplast is an intricate network of thylakoid membranes containing photosynthetic membrane proteins that mediate electron transport and generate chemical energy. Historically, electron microscopy (EM) has been a powerful tool for visualizing the macromolecular structure and organization of thylakoid membranes. However, an understanding of thylakoid membrane dynamics remains elusive because EM requires fixation and sectioning. To improve our knowledge of thylakoid membrane dynamics we need to consider at least two issues: (i) the live‐cell imaging conditions needed to visualize active processes in vivo; and (ii) the spatial resolution required to differentiate the characteristics of thylakoid membranes. Here, we utilize three‐dimensional structured illumination microscopy (3D‐SIM) to explore the optimal imaging conditions for investigating the dynamics of thylakoid membranes in living plant and algal cells. We show that 3D‐SIM is capable of examining broad characteristics of thylakoid structures in chloroplasts of the vascular plant Arabidopsis thaliana and distinguishing the structural differences between wild‐type and mutant strains. Using 3D‐SIM, we also visualize thylakoid organization in whole cells of the green alga Chlamydomonas reinhardtii. These data reveal that high light intensity changes thylakoid membrane structure in C. reinhardtii. Moreover, we observed the green alga Chromochloris zofingiensis and the moss Physcomitrella patens to show the applicability of 3D‐SIM. This study demonstrates that 3D‐SIM is a promising approach for studying the dynamics of thylakoid membranes in photoautotrophic organisms during photoacclimation processes.  相似文献   

7.
E Houben  de Gier JW    van Wijk KJ 《The Plant cell》1999,11(8):1553-1564
The mechanisms of targeting and insertion of chloroplast-encoded thylakoid membrane proteins are poorly understood. In this study, we have used a translation system isolated from chloroplasts to begin to investigate these mechanisms. The bacterial membrane protein leader peptidase (Lep) was used as a model protein because its targeting and insertion mechanisms are well understood for Escherichia coli and for the endoplasmic reticulum. Lep could thus provide insight into the functional homologies between the different membrane systems. Lep was efficiently expressed in the chloroplast translation system, and the protein could be inserted into thylakoid membranes with the same topology as in E. coli cytoplasmic membranes, following the positive-inside rule. Insertion of Lep into the thylakoid membrane was stimulated by the trans-thylakoid proton gradient and was strongly inhibited by azide, suggesting a requirement for SecA activity. Insertion most likely occurred in a cotranslational manner, because insertion could only be observed if thylakoid membranes were present during translation reactions but not when thylakoid membranes were added after translation reactions were terminated. To halt the elongation process at different stages, we translated truncated Lep mRNAs without a stop codon, resulting in the formation of stable ribosome nascent chain complexes. These complexes showed a strong, salt-resistant affinity for the thylakoid membrane, implying a functional interaction of the ribosome with the membrane and supporting a cotranslational insertion mechanism for Lep. Our study supports a functional homology for the insertion of Lep into the thylakoid membrane and the E. coli cytoplasmic membrane.  相似文献   

8.
The photosynthetic protein complexes in plants are located in the chloroplast thylakoid membranes. These membranes have an ultrastructure that consists of tightly stacked 'grana' regions interconnected by unstacked membrane regions. The structure of isolated grana membranes has been studied here by cryo-electron microscopy. The data reveals an unusual arrangement of the photosynthetic protein complexes, staggered over two tightly stacked planes. Chaotrope treatment of the paired grana membranes has allowed the separation and isolation of two biochemically distinct membrane fractions. These data have led us to an alternative model of the ultrastructure of the grana where segregation exists within the grana itself. This arrangement would change the existing view of plant photosynthesis, and suggests potential links between cyanobacterial and plant photosystem II light harvesting systems.  相似文献   

9.
Freeze-fracture electron microscopy has revealed that different size classes of intramembrane particles of chloroplast membranes are nonrandomly distributed between appressed grana and nonappressed stroma membrane regions. It is now generally assumed that thylakoid membranes contain five major functional complexes, each of which can give rise to an intramembrane particle of a defined size. These are the photosystem II complex, the photosystem I complex, the cytochrome f/b6 complex, the chlorophyll a/b light-harvesting complex, and the CF0 -CF1 ATP synthetase complex. By mapping the distribution of the different categories of intramembrane particles, information on the lateral organization of functional membrane units of thylakoid membranes can be determined. In this review, we present a brief summary of the evidence supporting the correlation of specific categories of intramembrane particles with known biochemical entities. In addition, we discuss studies showing that ions and phosphorylation of the membrane adhesion factor, the chlorophyll a/b light-harvesting complex, can affect the lateral organization of chloroplast membrane components and thereby regulate membrane function.  相似文献   

10.
The light reactions of photosynthesis in green plants are mediated by four large protein complexes, embedded in the thylakoid membrane of the chloroplast. Photosystem I (PSI) and Photosystem II (PSII) are both organized into large supercomplexes with variable amounts of membrane-bound peripheral antenna complexes. PSI consists of a monomeric core complex with single copies of four different LHCI proteins and has binding sites for additional LHCI and/or LHCII complexes. PSII supercomplexes are dimeric and contain usually two to four copies of trimeric LHCII complexes. These supercomplexes have a further tendency to associate into megacomplexes or into crystalline domains, of which several types have been characterized. Together with the specific lipid composition, the structural features of the main protein complexes of the thylakoid membranes form the main trigger for the segregation of PSII and LHCII from PSI and ATPase into stacked grana membranes. We suggest that the margins, the strongly folded regions of the membranes that connect the grana, are essentially protein-free, and that protein-protein interactions in the lumen also determine the shape of the grana. We also discuss which mechanisms determine the stacking of the thylakoid membranes and how the supramolecular organization of the pigment-protein complexes in the thylakoid membrane and their flexibility may play roles in various regulatory mechanisms of green plant photosynthesis.  相似文献   

11.
Thylakoid biogenesis is a crucial step for plant development involving the combined action of many cellular actors. CPSAR1 is shown here to be required for the normal organization of mature thylakoid stacks, and ultimately for embryo development. CPSAR1 is a chloroplast protein that has a dual localization in the stroma and the inner envelope membrane, according to microscopy studies and subfractionation analysis. CPSAR1 is close to the Obg nucleotide binding protein subfamily and displays GTPase activity, as demonstrated by in vitro assays. Disruption of the CPSAR1 gene via T‐DNA insertion results in the arrest of embryo development. In addition, transmission electron microscopy analysis indicates that mutant embryos are unable to develop thylakoid membranes, and remain white. Unstacked membrane structures resembling single lamellae accumulate in the stroma, and do not assemble into mature thylakoid stacks. CPSAR1 RNA interference induces partially developed thylakoids leading to pale‐green embryos. Altogether, the presented data demonstrate that CPSAR1 is a protein essential for the formation of normal thylakoid membranes, and suggest a possible involvement in the initiation of vesicles from the inner envelope membrane for the transfer of lipids to the thylakoids.  相似文献   

12.
Ferredoxin-NADP(+) oxidoreductase (FNR) is a ubiquitous flavin adenine dinucleotide (FAD)-binding enzyme encoded by a small nuclear gene family in higher plants. The chloroplast targeted FNR isoforms are known to be responsible for the final step of linear electron flow transferring electrons from ferredoxin to NADP(+), while the putative role of FNR in cyclic electron transfer has been under discussion for decades. FNR has been found from three distinct chloroplast compartments (i) at the thylakoid membrane, (ii) in the soluble stroma, and (iii) at chloroplast inner envelope. Recent in vivo studies have indicated that besides the membrane-bound FNR, also the soluble FNR is photosynthetically active. Two chloroplast proteins, Tic62 and TROL, were recently identified and shown to form high molecular weight protein complexes with FNR at the thylakoid membrane, and thus seem to act as the long-sought molecular anchors of FNR to the thylakoid membrane. Tic62-FNR complexes are not directly involved in photosynthetic reactions, but Tic62 protects FNR from inactivation during the dark periods. TROL-FNR complexes, however, have an impact on the photosynthetic performance of the plants. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.  相似文献   

13.
The light reactions of oxygenic photosynthesis almost invariably take place in the thylakoid membranes, a highly specialized internal membrane system located in the stroma of chloroplasts and the cytoplasm of cyanobacteria. The only known exception is the primordial cyanobacterium Gloeobacter violaceus, which evolved before the appearance of thylakoids and harbors the photosynthetic complexes in the plasma membrane. Thus, studies on G. violaceus not only shed light on the evolutionary origin and the functional advantages of thylakoid membranes but also might include insights regarding thylakoid formation during chloroplast differentiation. Based on biochemical isolation and direct in vivo characterization, we report here structural and functional domains in the cytoplasmic membrane of a cyanobacterium. Although G. violaceus has no internal membranes, it does have localized domains with apparently specialized functions in its plasma membrane, in which both the photosynthetic and the respiratory complexes are concentrated. These bioenergetic domains can be visualized by confocal microscopy, and they can be isolated by a simple procedure. Proteomic analysis of these domains indicates their physiological function and suggests a protein sorting mechanism via interaction with membrane-intrinsic terpenoids. Based on these results, we propose specialized domains in the plasma membrane as evolutionary precursors of thylakoids.  相似文献   

14.
The architecture of the entire photosynthetic membrane network determines, at the supramolecular level, the physiological roles of the photosynthetic protein complexes involved. So far, a precise picture of the native configuration of red algal thylakoids is still lacking. In this work, we investigated the supramolecular architectures of phycobilisomes (PBsomes) and native thylakoid membranes from the unicellular red alga Porphyridium cruentum using atomic force microscopy (AFM) and transmission electron microscopy. The topography of single PBsomes was characterized by AFM imaging on both isolated and membrane-combined PBsomes complexes. The native organization of thylakoid membranes presented variable arrangements of PBsomes on the membrane surface. It indicates that different light illuminations during growth allow diverse distribution of PBsomes upon the isolated photosynthetic membranes from P. cruentum, random arrangement or rather ordered arrays, to be observed. Furthermore, the distributions of PBsomes on the membrane surfaces are mostly crowded. This is the first investigation using AFM to visualize the native architecture of PBsomes and their crowding distribution on the thylakoid membrane from P. cruentum. Various distribution patterns of PBsomes under different light conditions indicate the photoadaptation of thylakoid membranes, probably promoting the energy-harvesting efficiency. These results provide important clues on the supramolecular architecture of red algal PBsomes and the diverse organizations of thylakoid membranes in vivo.  相似文献   

15.
Derivatives of poly(styrene-co-maleic acid) (pSMA), have recently emerged as effective reagents for extracting membrane protein complexes from biological membranes. Despite recent progress in using SMAs to study artificial and bacterial membranes, very few reports have addressed their use in studying the highly abundant and well characterized thylakoid membranes. Recently, we tested the ability of twelve commercially available SMA copolymers with different physicochemical properties to extract membrane protein complexes (MPCs) from spinach thylakoid membrane. Based on the efficacy of both protein and chlorophyll extraction, we have found five highly efficient SMA copolymers: SMA® 1440, XIRAN® 25010, XIRAN® 30010, SMA® 17352, and SMA® PRO 10235, that show promise in extracting MPCs from chloroplast thylakoids. To further advance the application of these polymers for studying biomembrane organization, we have examined the composition of thylakoid supramolecular protein complexes extracted by the five SMA polymers mentioned above. Two commonly studied plants, spinach (Spinacia oleracea) and pea (Pisum sativum), were used for extraction as model biomembranes. We found that the pSMAs differentially extract protein complexes from spinach and pea thylakoids. Based on their differential activity, which correlates with the polymer chemical structure, pSMAs can be divided into two groups: unfunctionalized polymers and ester derivatives.  相似文献   

16.
In plants the chloroplast thylakoid membrane is the site of light-dependent photosynthetic reactions coupled to ATP synthesis. The ability of the plant cell to build and alter this membrane system is essential for efficient photosynthesis. A nucleotide translocator homologous to the bovine mitochondrial ADP/ATP carrier (AAC) was previously found in spinach thylakoids. Here we have identified and characterized a thylakoid ATP/ADP carrier (TAAC) from Arabidopsis.(i) Sequence homology with the bovine AAC and the prediction of chloroplast transit peptides indicated a putative carrier encoded by the At5g01500 gene, as a TAAC. (ii) Transiently expressed TAAC-green fluorescent protein fusion construct was targeted to the chloroplast. Western blotting using a peptide-specific antibody together with immunogold electron microscopy revealed a major location of TAAC in the thylakoid membrane. Previous proteomic analyses identified this protein in chloroplast envelope preparations. (iii) Recombinant TAAC protein specifically imports ATP in exchange for ADP across the cytoplasmic membrane of Escherichia coli. Studies on isolated thylakoids from Arabidopsis confirmed these observations. (iv) The lack of TAAC in an Arabidopsis T-DNA insertion mutant caused a 30-40% reduction in the thylakoid ATP transport and metabolism. (v) TAAC is readily expressed in dark-grown Arabidopsis seedlings, and its level remains stable throughout the greening process. Its expression is highest in developing green tissues and in leaves undergoing senescence or abiotic stress. We propose that the TAAC protein supplies ATP for energy-dependent reactions during thylakoid biogenesis and turnover in plants.  相似文献   

17.
Plastid DNA, like bacterial and mitochondrial DNA, is organized into protein–DNA complexes called nucleoids. Plastid nucleoids are believed to be associated with the inner envelope in developing plastids and the thylakoid membranes in mature chloroplasts, but the mechanism for this re-localization is unknown. Here, we present the further characterization of the coiled-coil DNA-binding protein MFP1 as a protein associated with nucleoids and with the thylakoid membranes in mature chloroplasts. MFP1 is located in plastids in both suspension culture cells and leaves and is attached to the thylakoid membranes with its C-terminal DNA-binding domain oriented towards the stroma. It has a major DNA-binding activity in mature Arabidopsis chloroplasts and binds to all tested chloroplast DNA fragments without detectable sequence specificity. Its expression is tightly correlated with the accumulation of thylakoid membranes. Importantly, it is associated in vivo with nucleoids, suggesting a function for MFP1 at the interface between chloroplast nucleoids and the developing thylakoid membrane system.  相似文献   

18.
Mock T  Kroon BM 《Phytochemistry》2002,61(1):53-60
Low photosynthetic active radiation is a strong determinant in the development and growth of sea ice algae. The algae appear to have universal mechanisms to overcome light limitation. One important process, which is induced under light limitation, is the desaturation of chloroplast membrane lipids. In order to discover whether this process is universally valid in sea ice diatoms, we investigated three species coexisting in chemostats illuminated with 15 and 2 micromol photons m(-2) s(-1) at -1 degrees C. Growth under 2 micromol photons m(-2) s(-1) caused a 50% increase in monogalactosyldiacylglycerols (MGDG) thylakoid membrane related 20:5 n-3 fatty acids. This fatty acid supports the fluidity of the thylakoid membrane and therefore the velocity of electron flow, which is indicated by increasing rate constants for the electron transport between Q(A) (first stable electron acceptor) and bound Q(B) (second stable electron acceptor) (11.16 +/- 1.34 to 23.24 +/- 1.35 relative units). Two micromol photons m(-2) s(-1) furthermore resulted in higher amounts of non-lipid bilayer forming MGDG in relation to other bilayer forming lipids, especially digalactosydiacylglycerol (DGDG). The ratio of MGDG:DGDG increased from 3.4 +/- 0.3 to 5.7 +/- 0.3. The existence of bilayer thylakoid membranes with high proportions of non. bilayer forming lipids is only possible when sufficient thylakoid pigment-protein complexes are present. If more thylakoid pigment-protein complexes are present in membranes, as found under extreme light limitation, less bilayer forming lipids such as DGDG are required to stabilize the bilayer structure. Differences in protein contents between both light intensities were not found. Consequently pigment contents which nearly doubled under 2 micromol photons m(-2) s(-1) must be responsible in balancing the potential stability loss resulting from an increase in MGDG:DGDG ratio.  相似文献   

19.
We studied the aggregation state of Photosystem II in stacked and unstacked thylakoid membranes from spinach after a quick and mild solubilization with the non-ionic detergent n-dodecyl-α,D-maltoside, followed by analysis by diode-array-assisted gel filtration chromatography and electron microscopy. The results suggest that Photosystem II (PS II) isolates either as a paired, appressed membrane fragment or as a dimeric PS II-LHC II supercomplex upon mild solubilization of stacked thylakoid membranes or PS II grana membranes, but predominantly as a core monomer upon mild solubilization of unstacked thylakoid membranes. Analysis of paired grana membrane fragments reveals that the number of PS II dimers is strongly reduced in single membranes at the margins of the grana membrane fragments. We suggest that unstacking of thylakoid membranes results in a spontaneous disintegration of the PS II-LHC II supercomplexes into separated PS II core monomers and peripheral light-harvesting complexes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
高等植物叶绿体定位的铁氧还蛋白-NADP+氧化还原酶(LFNR)负责催化光合线性电子传递的最后一步反应,催化电子由还原态的铁氧还蛋白(Fd)传递给NADP+。LFNR分布在叶绿体的3个不同的组分中,即叶绿体基质中、类囊体膜上和叶绿体内膜上。最近的研究表明,大多数膜定位的LFNR并非光合作用所必需的,叶绿体基质中的LFNR足以维持光合作用的正常进行。叶绿体中的两个蛋白——Tic62和TROL作为LFNR的锚定蛋白,可以与LFNR在类囊体膜上形成高分子量的蛋白复合体。Tic62-LFNR复合体主要负责在夜间保护LFNR的活性,但它不直接在光合作用中起作用。然而,TROL-LFNR复合体对植物的光合作用有一定的影响。本文将概述植物LFNR的最新研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号