首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein disulfide isomerase (PDI) plays a key role in protein folding by catalyzing rearrangements of disulfide bonds in substrate proteins following their synthesis in eukaryotic cells. Besides its major role in the processing and maturation of secretory proteins in the endoplasmic reticulum, this enzyme and its homologs have been implicated in multiple important cellular processes; however, they have not served as targets for the development of therapeutic agents. The authors developed a high-throughput screening assay for PDI and its homologous enzymes in 384-well microplates. The method is based on the enzyme-catalyzed reduction of insulin in the presence of dithiothreitol and measures the aggregation of reduced insulin chains at 650 nm. This kinetic assay was converted to an end-point assay by using hydrogen peroxide as a stop reagent. The feasibility of this high-throughput assay for screening chemical libraries was demonstrated in a pilot screen. The authors show that this homogenous turbidometric assay is robust and cost-effective and can be applied to identify PDI inhibitors from chemical libraries, opening this class of enzymes for therapeutic exploration.  相似文献   

2.
We report on a new spectrofluorimetric assay for the measurement of reductase activity of proteins belonging to the superfamily of thioredoxins such as protein disulfide isomerase (PDI). The assay relies on the preparation of a fluorescence-quenched substrate easily accessible in two steps through functional group transformations of the peptide Gly-Cys-Asp. In the first step fluorescein isothiocyanate is linked to the Gly-NH(2) terminus and in the second step the Cys-SH groups are converted into a disulfide bond. Both intermediate and final substrate have been fully characterized by mass spectrometric and nuclear magnetic resonance measurements. Dimethyl sulfoxide is here reported to be a mild oxidizing agent allowing us to obtain in good overall yield the assay substrate in a single synthetic step. A reliable estimation of PDI reductase activity is obtained via the detection of a strong fluorescence enhancement after enzymatic reduction. Moreover, our assay provides further support for the key role played by thioredoxin reductase in enabling disulfide reductase activity of PDI.  相似文献   

3.
We developed a live-cell high-throughput assay system using the baker's yeast Saccharomyces cerevisiae to screen for chemical compounds that will inhibit fatty acid uptake. The target for the inhibitors is a mammalian fatty acid transport protein (mmFATP2), which is involved in the fatty acid transport and activation pathway. The mmFATP2 was expressed in a S. cerevisiae mutant strain deficient in Fat1p-dependent fatty acid uptake and reduced in long-chain fatty acid activation, fat1Deltafaa1Delta. To detect fatty acid import, a fluorescent fatty acid analog, 4,4-difluoro-5-methyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoic acid (C1-BODIPY-C12), was incubated with cells expressing FATP2 in a 96-well plate. The mmFATP2-dependent C1-BODIPY-C12 uptake was monitored by measuring intracellular C1-BODIPY-C12 fluorescence on a microtiter plate reader, whereas extracellular fluorescence was quenched by a cell viability dye, trypan blue. Using this high-throughput screening method, we demonstrate that the uptake of the fluorescent fatty acid ligand was effectively competed by the natural fatty acid oleate. Inhibition of uptake was also demonstrated to occur when cells were pretreated with sodium azide or Triacsin C. This yeast live-cell-based assay is rapid to execute, inexpensive to implement, and has adequate sensitivity for high-throughput screening. The assay basis and limitations are discussed.  相似文献   

4.
In eukaryotic cells the enzyme protein disulfide isomerase (PDI) is responsible for the formation and reshuffling of disulfide bonds in secretory proteins. The reaction carried out by PDI involves interaction with a highly complex mixture of polypeptide molecules that are in the process of folding. This means that PDI activity is typically measured in the context of a globular protein folding pathway. The absence of small, well-defined substrates for the quantitation of both oxidation and reduction reactions constitutes an inherent problem in the analysis of PDI activity. We describe a new type of substrate for PDI where two cysteine-containing oligopeptides are connected by an onameric ethylene glycol linker. We term such hybrid compounds PEGtides. The oligopeptides are each marked with a fluorescent aminobenzoic acid and a quenching nitrotyrosine group, respectively. The reversible formation of an intramolecular disulfide bond between fluorophore-containing and quencher-containing peptide segments results in a redox-dependent fluorescence signal. We find a model compound of this type to be a highly sensitive substrate for PDI both in oxidation and in reduction assays under steady state conditions. These aspects should make substrates of this type generally applicable for assaying PDI and other thiol-disulfide exchange enzymes.  相似文献   

5.
UBC13 is a noncanonical ubiquitin conjugating enzyme (E2) that has been implicated in a variety of cellular signaling processes due to its ability to catalyze formation of lysine 63-linked polyubiquitin chains on various substrates. In particular, UBC13 is required for signaling by a variety of receptors important in immune regulation, making it a candidate target for inflammatory diseases. UBC13 is also critical for double-strand DNA repair and thus a potential radiosensitizer and chemosensitizer target for oncology. The authors developed a high-throughput screening (HTS) assay for UBC13 based on the method of time-resolved fluorescence resonance energy transfer (TR-FRET). The TR-FRET assay combines fluorochrome (Fl)-conjugated ubiquitin (fluorescence acceptor) with terbium (Tb)-conjugated ubiquitin (fluorescence donor), such that the assembly of mixed chains of Fl- and Tb-ubiquitin creates a robust TR-FRET signal. The authors defined conditions for optimized performance of the TR-FRET assay in both 384- and 1536-well formats. Chemical library screens (total 456 865 compounds) were conducted in high-throughput mode using various compound collections, affording superb Z' scores (typically >0.7) and thus validating the performance of the assays. Altogether, the HTS assays described here are suitable for large-scale, automated screening of chemical libraries in search of compounds with inhibitory activity against UBC13.  相似文献   

6.
The hfe-threatening infections caused by Leptospira serovars demand the need for designing anti-leptospirosis drugs.The present study encompasses exploring inhibitors against phosphoheptose isomerase(GmhA)of Leptospira,which is vital for lipopolysaccharide(LPS)biosynthesis and is identified as a common drug target through the subtractive genomic approach.GmhA model was built in Modeller 9v7.Structural refinement and energy minimization of the predicted model was carried out using Maestro 9.0.The refined model reliability was assessed through Procheck,ProSA,ProQ and Profile 3D.The substrate-based virtual high-throughput screening(VHTS)in Ligand.Info Meta-Database tool generated an in-house library of 354 substrate structural analogs.Furthermore,structure-based VHTS from the in-house library with different conformations of each ligand provided 14 novel competitive inhibitors.The model together with insight gained from the VHTS would be a promising starting point for developing anti-leptospirosis competitive inhibitors targeting LPS biosynthesis pathway.  相似文献   

7.
In one of the first steps of prokaryotic ribosome assembly, the ribosomal protein S15 binds to a three-way junction in the central domain of the 16S rRNA. Binding causes a conformational change that is required for subsequent binding events. Using a novel fluorescence resonance energy transfer assay with three fluorophores, two on the RNA and one on the S15 protein, small-molecule libraries can be screened for potential inhibitors of this initial step in ribosome assembly. The employment of three fluorophores allows both the conformational change of the RNA and the binding of S15 to be monitored in a single assay.  相似文献   

8.
Lo MK  Tilgner M  Shi PY 《Journal of virology》2003,77(23):12901-12906
Prevention and treatment of infection by West Nile virus (WNV) and other flaviviruses are public health priorities. We describe a reporting cell line that can be used for high-throughput screening of inhibitors against all targets involved in WNV replication. Dual reporter genes, encoding Renilla luciferase (Rluc) and neomycin phosphotransferase (Neo), were engineered into a WNV subgenomic replicon, resulting in Rluc/NeoRep. Geneticin selection of BHK-21 cells transfected with Rluc/NeoRep yielded a stable cell line that contains persistently replicating replicons. Incubation of the reporting cells with known WNV inhibitors decreased Rluc activity, as well as the replicon RNA level. The efficacies of the inhibitors, as measured by the depression of Rluc activity in the reporting cells, are comparable to those derived from authentic viral infection assays. Therefore, the WNV reporting cell line can be used as a high-throughput assay for anti-WNV drug discovery. A similar approach should be applicable to development of genetics-based antiviral assays for other flaviviruses.  相似文献   

9.
Glycosyltransferases catalyze the transfer of a monosaccharide unit from a nucleotide or lipid sugar donor to polysaccharides, lipids, and proteins in a stereospecific manner. Considerable effort has been invested in engineering glycosyltransferases to diversify sugar-containing drugs. An important requirement for glycosyltransferase engineering is the availability of a glycosyltransferase assay system for high-throughput screening of glycosyltransferase mutants. In this study, a general glycosyltransferase assay system was developed based on an ATP sensor. This system showed submicromolar sensitivity and compatibility with both purified enzymes and crude cell extracts. The assay system will be useful for glycosyltransferase engineering based on high-throughput screening, as well as for general glycosyltransferase assays and kinetics.  相似文献   

10.
Transglutaminases (TGs) are widely distributed enzymes that catalyze posttranslational modification of proteins by Ca(2+)-dependent cross-linking reactions. The family members of TGs participate in many significant processes of biological functions such as tissue regeneration, cell differentiation, apoptosis, and certain pathologies. A novel technique for TG activity assay was developed in this study. It was based on the rapid capturing, fluorescence quenching, and fast separation of the unreacted fluorescent molecules from the macromolecular product with magnetic dextran-coated charcoal. As few as 3 ng of guinea pig liver transglutaminase (gpTG) could be detected by the method; activities of 96 TG samples could be measured within an hour. The K(m) of gpTG determined by this method for monodansylcadaverine (dansyl-CAD) and N, N-dimethylcasein was 14 and 5 muM, respectively. A typical competitive inhibition pattern of cystamine on dansyl-CAD for gpTG activity was also demonstrated. The application of this technique is not limited to the use of dansyl-CAD as the fluorescent substrate of TG; other small fluor-labeled TG substrates may substitute dansyl-CAD. Finally, this method is rapid, highly sensitive, and inexpensive. It is suitable not only for high-throughput screening of enzymes or enzyme inhibitors but also for enzyme kinetic analysis.  相似文献   

11.
Fucosyltransferase VII (FucTVII) is a very promising drug target for treatment of inflammatory skin diseases. Its activity is required for synthesis of the sialyl-Lewis X glycoepitopes on the E- and P-selectin ligands, necessary for lymphocyte migration into the skin. High-throughput screening (HTS) of large chemical libraries has become the main source of novel chemical entities for the pharmaceutical industry. The screening of very large compound collections requires the use of specialized assay techniques that minimize time and costs. We describe the development of a miniaturized scintillation proximity assay for human FucTVII based on a oligosaccharide acceptor substrate that is identical to the glycosylation of the physiological substrate. In addition to assay development, the assay performance in a HTS campaign is shown. We screened 798,131 compounds from the Schering AG HTS library and identified 233 IC50 hits; 229 hits were FucTVII specific in so far as they did not inhibit either alpha-fucosidase or galactosyltransferase. In addition to screening a drug-like small-molecule collection, we worked on rational approaches to develop inhibitors or glycosidic decoys based on oligosaccharide-substrate analogues. The structure-activity relationship observed thereby is very narrow and shows strict requirements that are consistent with the described substrate specificity of FucTVII.  相似文献   

12.
N A Morjana  H F Gilbert 《Biochemistry》1991,30(20):4985-4990
The protein disulfide isomerase catalyzed reduction of insulin by glutathione is inhibited by peptides of various length and amino acid composition. Peptide inhibitors are competitive against insulin and noncompetitive against GSH, consistent with a sequential rather than a double displacement mechanism. Peptides of unrelated primary sequence that do not contain cysteine inhibit the GSH-insulin transhydrogenase activity of PDI, and the affinity of these peptides toward the enzyme is largely dependent on the peptide length rather than composition, hydrophobicity, or charge. Cysteine-containing peptides are 4-8-fold better inhibitors than non-cysteine-containing peptides of the same length, suggesting a cysteine-specific component to the interaction with the enzyme. Oxidized insulin chain B also inhibits the oxidative folding of reduced ribonuclease in a glutathione redox buffer with an inhibition constant that is comparable to that observed for the inhibition of insulin reduction, suggesting a similar if not identical binding site for the catalysis of oxidative protein folding and the reduction of insulin.  相似文献   

13.
Protein disulfide isomerase (PDI) and its degradation products were found in HepG2, COS-1, and CHO-K1 cells. Whether or not the products were formed through autodegradation of PDI was examined, since PDI contains the CGHC motif, which is the active center of proteolytic activity in ER-60 protease. Commercial bovine PDI was autodegraded to produce a trimmed PDI. In addition, human recombinant PDI also had autodegradation activity. Mutant recombinant PDIs with CGHC motifs of which cysteine residues were replaced with serine or alanine residues were prepared. However, they were not autodegraded, suggesting the cysteine residues of motifs are necessary for autodegradation.  相似文献   

14.
Hydroxynitrile lyases (Hnls) are important biocatalysts for the synthesis of optically pure cyanohydrins, which are used as precursors and building blocks for a wide range of high price fine chemicals. Although two Hnl enzymes, from the tropical rubber tree Hevea brasiliensis and from the almond tree Prunus amygdalus, are already used for large scale industrial applications, the enzymes still need to be improved and adapted to the special demands of industrial processes. In many cases directed evolution has been the method of choice to improve enzymes, which are applied as industrial biocatalysts. The screening procedure is the most crucial point in every directed evolution experiment. Herein, we describe the successful development of a novel screening assay for Hnls and its application in high-throughput screening of Escherichia coli mutant libraries. The new assay allows rapid screening of mutant libraries and facilitates the discovery of improved enzyme variants. Hnls catalyze the cleavage of cyanohydrins to hydrocyanic acid and the corresponding aldehyde or ketone. The enzyme assay is based on the detection of hydrocyanic acid produced, making it an all-purpose screening assay, without restriction to any kind of substrate. The gaseous HCN liberated within the Hnl reaction is detected by a visible colorimetric reaction. The facile, highly sensitive and reproducible screening method was validated by identifying new enzyme variants with novel substrate specificities.  相似文献   

15.
JAK3 is an ideal target for the treatment of immune-related diseases and the prevention of organ allograft rejection. Several JAK3 inhibitors have been identified by biochemical enzymatic assays, but the majority display significant off-target effects on JAK2. Therefore, there is a need to develop new experimental approaches to identify compounds that specifically inhibit JAK3. Here, we show that in 32D/IL-2Rβ cells, STAT5 becomes phosphorylated by an IL-3/JAK2- or IL-2/JAK3-dependent pathway. Importantly, the selective JAK3 inhibitor CP-690,550 blocked the phosphorylation and the nuclear translocation of STAT5 following treatment of cells with IL-2 but not with IL-3. In an attempt to use the cells for large-scale chemical screens to identify JAK3 inhibitors, we established a cell line, 32D/IL-2Rβ/6xSTAT5, stably expressing a STAT5 reporter gene. Treatment of this cell line with IL-2 or IL-3 dramatically increased the reporter activity in a high-throughput format. As expected, CP-690,550 selectively inhibited the activity of the 6xSTAT5 reporter following treatment with IL-2. By contrast, the pan-JAK inhibitor curcumin inhibited the activity of this reporter following treatment with either IL-2 or IL-3. Thus, this study indicates that the STAT5 reporter cell line can be used as an efficacious cellular model for chemical screens to identify selective JAK3 inhibitors.  相似文献   

16.
A major pathway for bacterial preprotein translocation is provided by the Sec-dependent preprotein translocation pathway. Proteins destined for Sec-dependent translocation are synthesized as preproteins with an N-terminal signal peptide, which targets them to the SecYEG translocase channel. The driving force for the translocation reaction is provided by the peripheral membrane ATPase SecA, which couples the hydrolysis of ATP to the stepwise transport of unfolded preproteins across the bacterial membrane. Since SecA is essential, highly conserved among bacterial species, and has no close human homologues, it represents a promising target for antibacterial chemotherapy. However, high-throughput screening (HTS) campaigns to identify SecA inhibitors are hampered by the low intrinsic ATPase activity of SecA and the requirement of hydrophobic membranes for measuring the membrane or translocation ATPase activity of SecA. To address this issue, we have developed a colorimetric high-throughput screening assay in a 384-well format, employing an Escherichia coli (E. coli) SecA mutant with elevated intrinsic ATPase activity. The assay was applied for screening of a chemical library consisting of ∼27,000 compounds and proved to be highly reliable (average Z′ factor of 0.89). In conclusion, a robust HTS assay has been established that will facilitate the search for novel SecA inhibitors.  相似文献   

17.
Sphingolipids are key components of eukaryotic membranes, particularly the plasma membrane. The biosynthetic pathway for the formation of these lipid species is largely conserved. However, in contrast to mammals, which produce sphingomyelin, organisms such as the pathogenic fungi and protozoa synthesize inositol phosphorylceramide (IPC) as the primary phosphosphingolipid. The key step involves the reaction of ceramide and phosphatidylinositol catalysed by IPC synthase, an essential enzyme with no mammalian equivalent encoded by the AUR1 gene in yeast and recently identified functional orthologues in the pathogenic kinetoplastid protozoa. As such this enzyme represents a promising target for novel anti-fungal and anti-protozoal drugs. Given the paucity of effective treatments for kinetoplastid diseases such as leishmaniasis, there is a need to characterize the protozoan enzyme. To this end a fluorescent-based cell-free assay protocol in a 96-well plate format has been established for the Leishmania major IPC synthase. Using this system the kinetic parameters of the enzyme have been determined as obeying the double displacement model with apparent Vmax = 2.31 pmol min?1 U?1. Furthermore, inhibitory substrate analogues have been identified. Importantly this assay is amenable to development for use in high-throughput screening applications for lead inhibitors and as such may prove to be a pivotal tool in drug discovery.  相似文献   

18.
Hedgehog (Hh) signaling plays an important role in embryonic patterning and adult stem cell renewal but has recently been found also to be involved in certain stem cell cancers. One of the first steps in Hh signaling is the autoprocessing of Hh protein, in which the C-terminal domain (Hh-C) catalyzes a cholesterol-dependent autocleavage reaction that leads to the production of the cholesterol ester of the N-terminal Hh domain (Hh-N), thereby yielding a signaling molecule that activates the Hh pathway by binding to the Patched receptor. This article describes an in vitro, homogeneous assay system that measures changes in fluorescence polarization that accompany the cholesterol-dependent autocleavage of Hh protein. The assay system makes use of a modified Hh protein in which Hh-N, which is not essential for autocleavage, is replaced by a 25-residue peptide containing a tetracysteine motif, complexed with a bisarsenical fluorophore. The assay is quite robust and easily adapted to high-throughput screening in 384-well plates with Z' factors above 0.8. It has been used to screen the National Institutes of Health Clinical Collection, which has led to the identification of 2 compounds that inhibit the cholesterol-dependent autocleavage of Hh protein at micromolar concentrations.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号