首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
油莎豆的组织培养和快速繁殖   总被引:2,自引:0,他引:2  
1植物名称油莎豆(Cyperus esculentus L.var.sativus Boeck),又名油莎草、铁荸荠、地下板栗、地下核桃、人参果和人参豆。2材料类别块茎顶芽。3培养条件芽诱导培养基:(1)MS NAA1mg·L-1  相似文献   

2.
Background and AimsCyperus esculentus is widespread in tropical and temperate zones and is also present in cooler regions. It is used as a crop plant, but it also occurs in the wild and as a weed. As a consequence of its ecological plasticity, C. esculentus has remarkable variability, with several morphotypes. Four wild-type varieties are presently recognized, in addition to the cultivated form. This study investigates the phylogenetic position and biogeography of C. esculentus with the objective of contributing new data to increase the understanding of its evolutionary history.Methods Genealogical relationships among genotypes were inferred by using plastid DNA haplotype and nuclear ribosomal (nr) DNA ribotype sequences for 70 specimens either collected in the field or obtained from herbaria. Statistical dispersal–vicariance (S-DIVA) and Bayesian binary method (BBM) analyses were used to reconstruct the possible ancestral ranges of C. esculentus. In order to determine the age of C. esculentus, a time-measured phylogenetic analysis was performed.Key Results Considerable variation between the chosen nuclear and plastid markers was detected (27 ribotypes vs. six haplotypes). No geographical structure was displayed among the haplotypes, but information on the dispersal pattern may be deduced. Two types of ribotypes were detected in nrDNA, with an evident geographical segregation into an Old World group and a polymorphic New World group. Both S-DIVA and BBM analyses suggested a biogeographical history in which dispersal from the African region has been crucial in shaping the current distribution pattern of C. esculentus. The most recent common ancestor between C. esculentus races has an age of 5.1 million years (95 % highest posterior density 2.5–10.2).Conclusions The molecular analysis provides novel insights into the evolutionary history of C. esculentus. The results have various taxonomic and phylogenetic implications, including a hypothesis on the origin and phylogeography of this species, which probably originated in the late Cenozoic in Africa, and reached the Americas repeatedly, independently of Columbian exchanges.  相似文献   

3.
4.
Summary A series of experiments was conducted to determine the inheritance of seed weight in cucumber. Matings between a Cucumis sativus var. sativus (Cs) L. inbred line (USDA WI 1606; P1) and a C. sativus var. hardwickii (Royle) Kitamura (Ch) collection (PI 215589; P2) were made to produce seed of reciprocal F1, F2, and BC1 families. Families were grown under field and greenhouse conditions, and seeds were extracted from fruit 55 to 60 days post-pollination. Seed of F1 and F2 families was obtained using the Cs inbred WI2808 (P12) and the Ch collection LJ 90430 (P10), and seed of F1 families were produced using a North Carolina Design II mating scheme in which three Cs (P3= GY-14; P4=WI 1379; P5=WI 1909) inbreds were used as maternal parents and seven Ch collections (P2; P6= PI462369; P7=486336; P8=LJ91176; P9=273469; P10= 2590430; P11=PI187367) were used as paternal parents. Mean seed weights of F1 progeny reflected the dominance of genes of the C. sativus var. sativus parent. Transformation to number of seeds per unit weight resulted in increased variance homogeneity within generations and a broad-sense heritability ranging between 26% to 56%. Additive and dominance effects were important in the expression of seed weight in P1×P2 progeny produced in the greenhouse and additive effects were important in field grown progeny resulting from P1×P2 and P10×P12 matings. The estimated number of factors or loci involved ranged between 10 to 13, depending on the method of calculation.  相似文献   

5.
? Premise of the study: Storage oil (triacylglycerol) accumulates in tissues such as the embryo and endosperm of seeds and the fruit mesocarp, but seldom in underground organs. As a rare exception, cultivated variants of yellow nutsedge (Cyperus esculentus) contain high amounts of both oil and starch in the mature tubers. ? Methods: Biochemical analyses and light and electron microscopy were used to study the accumulation patterns of storage nutrients in developing nutsedge tubers. ? Key results: During the initial phase of tuber development, the conducting rhizome tissue is transformed into a storage compartment, then massive storage reserves accumulate in the tuber. At the beginning of tuber development, a large sugar load coincided with the onset of starch accumulation. Oil accumulation started later, concomitant with a substantial drop in the sugar content. Initially, oil accumulated at a lower rate compared to starch, but the rate later increased; after 6 wk, oil made up 24% of tuber dry mass, while starch made up 32%. Protein concentration changed only a small amount throughout this development. Oil and starch accumulated in the same cells throughout the tubers in a sequential fashion during tuber development. ? Conclusions: The developmental pattern in the build up of storage nutrients in the tubers highlights nutsedge as a novel model plant, having potential to significantly widen our understanding on how synthesis of storage reserves, and in particular oils, is regulated and directed in nonseed tissues such as tubers and roots.  相似文献   

6.
Brassica species are particularly receptive to gene transformation techniques. There now exists canola genotypes with transgenic herbicide resistance for glyphosate, imidazolinone, sulfonylurea and glufosinate herbicides. The main concern of introducing such herbicide resistance into commercial agriculture is the introgression of the engineered gene to related weed species. The potential of gene transfer between canola (Brassica napus and B. campestris) and related weed species was determined by hand pollination under controlled greenhouse conditions. Canola was used as both male and female parent in crosses to the related weed species collected in the Inland Northwest region of the United States. Weed species used included: field mustard (B. rapa), wild mustard (S. arvensis) and black mustard (B. nigra). Biological and cytological aspects necessary for successful hybrid seed production were investigated including: pollen germination on the stigma; pollen tube growth down the style; attraction of pollen tubes to the ovule; ovule fertilisation; embryo and endosperm developmental stages. Pollen germination was observed in all 25 hybrid combinations. Pollen tubes were found in the ovary of over 80% of combinations. About 30% of the hybrid combinations developed to the heart stage of embryo development or further. In an additional study involving transgenic glufosinate herbicide resistant B. napus and field mustard it was found that hybrids occurred with relatively high frequency, hybrids exhibited glufosinate herbicide resistance and a small proportion of hybrids produced self fertile seeds. These fertile plants were found to backcross to either canola or weed parent.  相似文献   

7.
8.
Giant reed (Arundo donax) is a promising energy crop of the Mediterranean areas. It has long been associated with humans and has been cultivated in Asia, southern Europe, North Africa and the Middle East for thousands of years. It is a perennial herbaceous plant (Poaceae) found in grasslands and wetlands throughout a wide range of climatic zones. Amplified fragment length polymorphism (AFLP) analysis was used to assess genetic inter and intrarelationships between A. donax and other Arundo species. Furthermore, the development of the sexual apparatus was analysed to understand the basis of sterility in the accession examined. The dendrograms obtained by phenetic and cladistic analysis support the monophyletic origin of giant reed and suggest that it originated in Asia and began to spread into the Mediterranean without traces of hybridisation with the other Arundo species. In particular, samples from Mediterranean areas are characterisd by a lower gene diversity and incidence of rare AFLP fragments indicating that these populations are recent in origin. Moreover, results indicate the occurrence of post-meiotic alterations in the ovule and pollen developmental pathway. Thus, the success of giant reed can be attributed mainly to its rapid clonal spread by rhizome extension, flood dispersal of rhizome and culm fragments.  相似文献   

9.
Radish (Raphanus sativus L.) plants were grown at five soil salinity levels (1, 2, 4, 9 and 13 dS m-1) to analyse the effects on growth, dry matter partitioning, leaf expansion and water and nutrient use. Salinity was varied by proportionally changing the concentration of all macro nutrients. When the electrical conductivity (EC) of the soil solution increased from 1 to 13 dS m-1, the influx concentration of the nutrients absorbed by the plants (the ratio between the uptakes of nutrients and water) increased only from 1.6 to 3.5 dS m-1. The total nutrient uptake showed an optimum at an EC of the soil solution of about 4 dS m-1. The data suggest that at low salinity level (≤ 2 dS m-1) the nutrient uptake was limited by availability while at high salinity (>4 dS m-1) it was limited by the growth of the plant. Total water use by the plants decreased and water use efficiency increased at high salinity. Plant growth was optimal at 2–4 dS m-1. At salinities higher than 4 dS m-1 total plant dry weight decreased 2.8% per dS m-1. About 80% of the growth reduction at high salinity could be attributed to reduction of leaf area expansion and hence to reduction of light interception. The remaining 20% of the salinity effect on growth was most likely explained by a decrease in stomatal conductance. The small leaf area at high salinity was related to a reduced specific leaf area and increased tuber/shoot weight ratio. The latter could be attributed to tuber formation starting at a smaller plant size at high salinity. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
11.
Five cultivars of Hibiscus esculentus L. and six cultivars of Vigna sinensis (L.) Endl. were tested for their relative resistance to Pseudocercospora spp. Differences in susceptibility to the leaf spot pathogen were observed in both host and non-host interactions. The H. esculentus cv. South Sea and V. sinensis cv. Purple Mart were most susceptible to Pseudocercospora abelmoschi and P. cruenta, respectively. The H. esculentus cv. Pure Luck was most tolerant to P. abelmoschi while the V. sinensis cv. KY Bush was highly resistant to P. cruenta. A distinct host-specific interaction was observed among the different species of Pseudocercospora. Cultivar specific interactions were most pronounced between V. sinensis and P. cruenta. A direct correlation was observed between the variation in peroxidase activity in the soluble fraction of inoculated leaves and resistance to infection in H. esculentus and V. sinensis cultivars. The soluble fraction of inoculated leaves had higher peroxidase activity than either mitochondrial or chloroplast extracts.  相似文献   

12.
Saffron (Crocus sativus L.), and its main constituents, crocin, and crocetin have shown promising effects as an antileukemic agent in animal models and cell culture systems. Saffron retards the growth of cancer cells via inhibiting nucleic acid synthesis and enhancing antioxidative system. It can induce apoptosis and chemosensitivity via inhibiting multidrug resistance proteins. Saffron also induces differentiation pathways via inhibiting promyelocytic leukemia/retinoic acid receptor-α, histone deacetylase1, and tyrosyl DNA phosphodiesterase-1 as well. The present review highlights the most recent findings on the antileukemic effects of saffron and its underlying molecular targets. The emerging evidence suggests that saffron has a selective toxicity effect against leukemic cells while is safe for the normal cells.  相似文献   

13.
14.

Background

In recent years, the desire to adopt a healthy diet has drawn attention to legume seeds and food products derived from them. Mash bean is an important legume crop used in Pakistan however a systematic mapping of the chemical composition of mash bean seeds is lacking. Therefore seeds of four mash bean (Vigna mungo (L.) Hepper, family Leguminoseae) cultivars (NARC-Mash-1, NARC-Mash-2, NARC-Mash-3, NARC-Mash-97) commonly consumed in Pakistan have been analyzed for their chemical composition, antioxidant potential and biological activities like inhibition of formation of advanced glycation end products (AGE) activity and tyrosinase inhibition activity.

Results

The investigated cultivars varied in terms of biochemical composition to various extents. Mineral composition indicated potassium and zinc in highest and lowest amounts respectively, in all cultivars. The amino acid profile in protein of these cultivars suggested cysteine is present in lowest quantity in all cultivars while fatty acid distribution pattern indicated unsaturated fatty acids as major fatty acids in all cultivars. All cultivars were found to be rich source of tocopherols and sterols. Fourier transform infrared spectroscopy (FTIR) fingerprints of seed flour and extracts indicated major functional groups such as polysaccharides, lipids, amides, amines and amino acids. Results indicated that all investigated cultivars possessed appreciable antioxidant potential.

Conclusions

All cultivars are rich source of protein and possess sufficient content of dietary fiber, a balanced amino acid profile, low saturated fatty acids and antioxidant capacity that rationalizes many traditional uses of seeds of this crop besides its nutritional importance. The collected data will be useful for academic and corporate researchers, nutritionists and clinical dieticians as well as consumers. If proper attention is paid, it may become an important export commodity and may fetch considerable foreign exchange for Pakistan.  相似文献   

15.
A reproducible procedure was developed for genetic transformation of grasspea using epicotyl segment co-cultivation with Agrobacterium. Two disarmed Agrobacterium tumefaciens strains, EHA 105 and LBA 4404, both carrying the binary plasmid p35SGUSINT with the neomycin phosphotransferase II (nptII) gene and the -glucuronidase (gus)-intron, were studied as vector systems. The latter was found to have a higher transforming ability. Several key factors modifying the transformation rate were optimized. The highest transformation rate was achieved using hand-pricked explants for infection with an Agrobacterium culture corresponding to OD6000.6 and diluted to a cell density of 109 cells ml–1 for 10 min, followed by co-cultivation for 4 days in a medium maintained at pH 5.6. Putative transformed explants capable of forming shoots were selected on regeneration medium containing kanamycin (100 g ml–1). We achieved up to 36% transient expression based on the GUS histochemical assay. Southern hybridization of genomic DNA of the kanamycin-resistant GUS-expressive shoots to a gus-intron probe substantiated the integration of the transgene. Transformed shoots were rooted on half-strength MS containing 0.5 mg l–1 indole-3-acetic acid, acclimated in vermi-compost and established in the experimental field. Germ-line transformation was evident through progeny analysis. Among T1 seedlings of most transgenic plant lines, kanamycin-resistant and -sensitive plants segregated in a ratio close to 3:1.  相似文献   

16.
Row crops are often inefficient in utilizing soil resources. One reason for this appears to be inefficient rooting of the available soil volume. Five experiments were performed to study the temporal and spatial root development of cauliflower (cv. Plana). The crop was grown with 60 cm between rows, and root development was followed in minirhizotrons placed under the crop rows, 15 cm, and 30 cm from the crop rows. Soil was sampled and analyzed for nitrate content at the final harvest and once during growth. In two of the experiments N fertilizer rate was varied and in two of the other experiments two cultivars were compared (cv. Plana and Siria).The rooting depth of cauliflower was found to be linearly related to temperature sum, with a growth rate of 1.02 mm day-1 °C-1. Depending on duration of growth this leads to rooting depths at harvest of 85–115 cm. Soil analysis showed that the cauliflower was able to utilize soil nitrogen down to at least 100 cm.With Plana differences in root growth between row and interrow soil were only observed during early growth, but with Siria this difference was maintained until harvest. However, at harvest both cultivars had depleted row and interrow soil nitrate equally efficient. Nitrogen fertilizer did not affect overall root development significantly.The branching frequency of actively branching roots was increased in all soil layers from about 6 to 10 branches cm-1 by increasing N fertilizer additions from 130 to 290 kg N ha-1. Increasing N supply increased the number of actively branching roots in the topsoil and reduced it in the subsoil.The average growth rate of the roots was always highest in the newly rooted soil layers, but fell during time. At 74 days after planting very few roots were growing in the upper 60 cm of the soil whereas 70% of the root tips observed in the 80–100 cm soil layer were actively growing. Within each soil layer there was a large variation in growth rate of individual root tips.  相似文献   

17.
Jasmonates are a new group of plant hormones; their roles on plant development are still little known. The aim of this work is to determine the action of jasmonates on cabbage, Brassica oleracea L. var Capitata, development both in in vitro cultured explants and in whole plants. Jasmonic acid (JA) enhanced nodal explant development when applied at 2–50 nM and inhibited it when supplied at 1250 and 6000 nM JA. Overall plant development was enhanced most under the 10 nM JA treatment; which significantly increased the explant shoot, leaf, and root dry weight. The root system of the explants cultured under the lower JA concentrations appeared more vigorous. Jasmonic acid also promoted the development of isolated in vitro cultured roots when applied at 2 and 10 nM. Root length and weight significantly increased, while concentrations 250 nM JA and over were detrimental. Isolated roots were progressively thicker as the JA concentration increased. Methyl jasmonate promoted both the below- and above-ground cabbage plant development when applied in a confined atmosphere at a concentration of only 1.225 nl.l–1 MJ: plants were higher and heavier, and showed an improved root system development. On the other hand, the 2.43 nl.l–1 MJ treatment decreased plant growth. The present work reveals a role for jasmonates as enhancers of in vitro and in vivo cabbage plant development. To our knowledge, no corresponding studies on the effects of jasmonates on whole plants have been previously published.  相似文献   

18.
The present study was aimed to analyze the effects of external Zn supply on arsenic (As) toxicity in Hydrilla verticillata (L.f.) Royle. The plants were exposed to arsenite (AsIII; 10 μM) with or without 50 and 100 μM Zn. The level of As accumulation (μg g?1 dw) after 2 and 4 days was not significantly affected by Zn supply. The plants showed a significant stimulation of the thiol metabolism (nonprotein thiols, cysteine, glutathione-S-transferase activity) upon As(III) exposure in the presence of Zn as compared to As(III) alone treatment. Besides, they did not experience significant toxicity, measured in terms of hydrogen peroxide and malondialdehyde accumulation, which are the indicators of oxidative stress. The minus Zn plants suffered from oxidative stress probably due to insufficient increase in thiols to counteract the stress. Stress amelioration by Zn supply was also evident from antioxidant enzyme activities, which came close to control levels with increasing Zn supply as compared to the increase observed in As(III) alone treatment. Variable Zn supply also modulated the level of photosynthetic pigments and restored them to control levels. In conclusion, an improved supply of Zn to plants was found to augment their ability to withstand As toxicity through enhanced thiol metabolism.  相似文献   

19.
Abstract

Exposure to UV-B at ambient or enhanced levels is known to trigger a variety of responses in all living organisms, including higher plants. Here we show that in Cucumis sativus L. UV-B radiation affects enzyme activity of key oxydative pentose phosphate pathway (OPPP) enzymes glucose-6-phosphate dehydrogenase (G6P-DH) and 6-phosphogluconate dehydrogenase (6-PGlu-DH), of key phenolic compounds enzyme phenylalanine ammonia lyase (PAL) as well as erythrose-4-phosphate, tryptophan and tyrosine levels. Furthermore, we found an increased activity of antioxidant enzymes such as peroxidase (POX) and catalase (CAT) in treated plants, with respect to the controls. In order to confirm the biochemical results, we isolated total RNA from both controls and UV-B treated plants to be used for gene expression analysis. We demonstrated that UV-B increases the gene expression level of peroxidase (POX), catalase (CAT) and phenylalanine ammonia lyase (PAL). Finally, our results are useful for understanding protective strategies against UV-B radiation and for elucidating what components are involved in stress-induced signals within the plant.  相似文献   

20.
The cross-pollinated crop Brassica oleracea var. capitata L. shows good heterotic heterosis at high output; better standing of the plants; early maturity; larger and more homogeneous heads; consistency of head compactness; and disease-tolerance in F1 hybrids. There is very limited information documented on the epistasis of essential cabbage characters. We expand the research in this study to include an upgraded test to cross-design for enrolling and estimating epistasis and other genetic variance components controlling head yield and component traits in cabbage. The data was obtained from 45 families produced by crossing 15 lines with three testers; SC 2008–09, E-1-3-1&2, and their single cross F1, was subjected to triple test cross analysis. The current study results confirmed “j + 1” form of epistasis which is a major component for all traits. The plant spread, non-wrapper leaves, nethead/grossweight, polar/equatorial diameter, marketable head yield per plot, iron content and dry matter lugged both “j + 1” and 'i' type with the predominance of the 'i' type of interaction. Except for head shape index, equatorial diameter, head compactness was more noticeable when observed in dominance component. The degree of dominance is in the partial range, but both the head shape index/compactness and equatorial diameter showed over dominance. For maximum part, superiority was shown in both the directions. Appropriate breeding procedures are proposed to exploit the different forms of gene effects discovered for genetic improvement of head yield and quality traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号