首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Entry of Neisseria meningitidis (the meningococcus) into human brain microvascular endothelial cells (HBMEC) is mediated by fibronectin or vitronectin bound to the surface protein Opc forming a bridge to the respective integrins. This interaction leads to cytoskeletal rearrangement and uptake of meningococci. In this study, we determined that the focal adhesion kinase (FAK), which directly associates with integrins, is involved in integrin-mediated internalization of N. meningitidis in HBMEC. Inhibition of FAK activity by the specific FAK inhibitor PF 573882 reduced Opc-mediated invasion of HBMEC more than 90%. Moreover, overexpression of FAK mutants that were either impaired in the kinase activity or were not capable of autophosphorylation or overexpression of the dominant-negative version of FAK (FRNK) blocked integrin-mediated internalization of N. meningitidis. Importantly, FAK-deficient fibroblasts were significantly less invaded by N. meningitidis. Furthermore, N. meningitidis induced tyrosine phosphorylation of several host proteins including the FAK/Src complex substrate cortactin. Inhibition of cortactin expression by siRNA silencing and mutation of critical amino acid residues within cortactin, that encompass Arp2/3 association and dynamin binding, significantly reduced meningococcal invasion into eukaryotic cells suggesting that both domains are critical for efficient uptake of N. meningitidis into eukaryotic cells. Together, these results indicate that N. meningitidis exploits the integrin signal pathway for its entry and that FAK mediates the transfer of signals from activated integrins to the cytoskeleton. A cooperative interplay between FAK, Src and cortactin then enables endocytosis of N. meningitidis into host cells.  相似文献   

2.
Following pilus-mediated adhesion to human brain endothelial cells, meningococcus (N. meningitidis), the bacterium causing cerebrospinal meningitis, initiates signaling cascades, which eventually result in the opening of intercellular junctions, allowing meningeal colonization. The signaling receptor activated by the pathogen remained unknown. We report that N. meningitidis specifically stimulates a biased β2-adrenoceptor/β-arrestin signaling pathway in endothelial cells, which ultimately traps β-arrestin-interacting partners, such as the Src tyrosine kinase and junctional proteins, under bacterial colonies. Cytoskeletal reorganization mediated by β-arrestin-activated Src stabilizes bacterial adhesion to endothelial cells, whereas β-arrestin-dependent delocalization of junctional proteins results in anatomical gaps used by bacteria to penetrate into tissues. Activation of β-adrenoceptor endocytosis with specific agonists prevents signaling events downstream of N. meningitidis adhesion and inhibits bacterial crossing of the endothelial barrier. The identification of the mechanism used for hijacking host cell signaling machineries opens perspectives for treatment and prevention of meningococcal infection.  相似文献   

3.
Polymorphonuclear neutrophil leucocytes (PMNs) are a critical part of innate immune defence against bacterial pathogens, and only a limited subset of microbes can escape killing by these phagocytic cells. Here we show that Neisseria meningitidis, a leading cause of septicaemia and meningitis, can avoid killing by PMNs and this is dependent on the ability of the bacterium to acquire L-glutamate through its GltT uptake system. We demonstrate that the uptake of available L-glutamate promotes N. meningitidis evasion of PMN reactive oxygen species produced by the oxidative burst. In the meningococcus, L-glutamate is converted to glutathione, a key molecule for maintaining intracellular redox potential, which protects the bacterium from reactive oxygen species such as hydrogen peroxide. We show that this mechanism contributes to the ability of N. meningitidis to cause bacteraemia, a critical step in the disease process during infections caused by this important human pathogen.  相似文献   

4.
Despite advances against infectious diseases over the past century, Neisseria meningitidis remains a major causative agent of meningitis and septicaemia worldwide. Its adaptation for survival in the human nasopharynx makes the meningococcus a highly successful commensal bacterium. Recent progress has been made in understanding the mechanisms that enable neisserial colonisation, in terms of the role of type IV pili, the impact of other adhesins, biofilm formation, nutrient acquisition and resistance to host immune defences. Refinements in cell-based and in vivo models will lead to improved understanding of the colonisation process, and hopefully to more effective vaccines and therapeutic strategies.  相似文献   

5.
Bacteriocin production by strains of Neisseria meningitidis   总被引:13,自引:3,他引:10  
Kingsbury, David T. (Naval Medical Research Institute, Bethesda, Md.). Bacteriocin production by strains of Neisseria meningitidis. J. Bacteriol. 91:1696-1699. 1966.-Strains of Neisseria meningitidis produce substances inhibitory to other strains of meningococcus. These substances are nontransmissible and show a high degree of strain specificity. The properties of one of these substances resemble those of the class of bacterial inhibitors called bacteriocins. Synthesis of this "meningocin" can be increased as much as 200-fold by induction with mitomycin C. It shows a high degree of heat stability and is sensitive to proteolytic enzymes. Six bacteriocins from strains of N. meningitidis have been used to type meningococci. By use of this procedure, strains that were identical serologically were placed into distinct bacteriocin groups.  相似文献   

6.
The opa genes of the Gram negative bacterium Neisseria meningitidis encode Opacity-associated outer membrane proteins whose role is to promote adhesion to the human host tissue during colonisation and invasion. Each meningococcus contains 3-4 opa loci, each of which may be occupied by one of a large number of alleles. We analysed the Opa repertoire structure in a large, well-characterised collection of asymptomatically carried meningococci. Our data show an association between Opa repertoire and meningococcal lineages similar to that observed previously for meningococci isolated from cases of invasive disease. Furthermore, these Opa repertoires exhibit discrete, non-overlapping structure at a population level, and yet low within-repertoire diversity. These data are consistent with the predictions of a mathematical model of strong immune selection upon a system where identical alleles may occupy different loci.  相似文献   

7.
Epidemic disease caused by Neisseria meningitidis, the meningococcus, has been recognized for two centuries, but remains incompletely controlled and understood. There have been dramatic reductions in serogroup A and C meningococcal disease following the introduction of protein-polysaccharide conjugate vaccines, but there is currently no comprehensive vaccine against serogroup B meningococci. Genetic analyses of meningococcal populations have provided many insights into the biology, evolution and pathogenesis of this important pathogen. The meningococcus, and its close relative the gonococcus, are the only pathogenic members of the genus Neisseria, and the invasive propensity of meningococci varies widely, with approximately a dozen 'hyperinvasive lineages' responsible for most disease. Despite this, attempts to identify a 'pathogenome', a subset of genes associated with the invasive phenotypes, have failed; however, genome-wide studies of representative meningococcal isolates using high-throughput sequencing are beginning to provide details on the relationship of invasive phenotype and genotype in this fascinating organism and how this relationship has evolved.  相似文献   

8.
9.
Since the first outbreaks of meningococcal meningitis were first described in Geneva in 1804 and in New England in 1806, and since the discovery of the causative agent by Weichselbaum in 1887 and the beginning of epidemics of meningococcal meningitis in the sub-Saharan Africa approximately 100 years ago, Neisseria meningitidis has been recognized as the cause worldwide of epidemic meningitis and meningococcemia. The massive epidemic outbreaks in sub-Saharan Africa in the 1990's, the emergence since 1995 of serogroups Y, W-135 and X and the prolonged outbreak of serogroup B meningococcal disease in New Zealand over the last decade serve to remind us of the continued potential of the meningococcus to cause global morbidity and mortality. This report reviews new discoveries impacting prevention and future prospects for conquering the meningococcus as a human pathogen.  相似文献   

10.
A. vaginal isolate of Neisseria has been reported to resemble Neisseria meningitidis in biochemical characteristics but to react with serological reagents that are specific to the PI porin from Neisseria gonorrhoeae. We have confirmed that this isolate has the biochemical attributes of a meningococcus and have shown that it clusters among meningococcal Isolates on a dendrogram based on isoenzyme variation within housekeeping enzymes from populations of N. meningitidis and N. gonorrhoeae. Furthermore, the sequences of the fbp and adk genes were typical of those of N. meningitidis and were distinct from those of N. gonorrhoeae. However, the porB gene was very similar to the por genes of N. gonorrhoeae isolates that express the PIB class of outer-membrane porin (differing from one gonococcal por allele at only a single nucleotide site), and was clearly distinct from the porB genes of N. meningitidis. The isolate therefore appears to be a typical meningococcus, except that its porB gene has been replaced with the por gene from a gonococcus.  相似文献   

11.
It was shown that the antigen determining the group specificity of meningococcus belonging to serological group A was of mixed polysaccharide-protein nature. Carbohydrate component is responsible for the interaction with the group-specific antibodies in this antigen. Glycoprotein can be isolated both from the cells and from the culture fluid where it passes during the N. meningitidis cultivation in fluid nutrient medium. The described antigen possesses no properties of endotoxin.  相似文献   

12.
脑膜炎奈瑟菌主要引起儿童细菌性脑脊髓膜炎和败血症,有较高的发病率和病死率。现用疫苗能够控制A、C、W135和Y群脑膜炎球菌引起的感染,而由于B群荚膜多糖免疫原性弱,外膜蛋白变异性高等原因,仍无安全和具有广泛保护性的疫苗用于控制B群脑膜炎球菌的感染。目前,B群脑膜炎球菌大多已成为引起发达国家侵袭性脑膜炎疾病的主要病原体。随着研究的不断深入,B群脑膜炎球菌疫苗的研究已经取得了很大的进展,外膜囊(Out membrane vesicles,OMV)疫苗已经在控制特异性菌株爆发流行中取得了成功。然而,人们对具有广泛保护性的B群脑膜炎球菌疫苗的探索仍在继续。本文对近年来B群脑膜炎球菌基于不同型抗原疫苗的各种研制策略及其存在的问题进行了综述。  相似文献   

13.
Previous estimates of rates of synonymous (d(S)) and nonsynonymous (d(N)) substitution among Neisseria meningitidis gene sequences suggested that the surface loops of the variable outer membrane protein PorB were under only weak selection pressure from the host immune response. These findings were consistent with studies indicating that PorB variants were not always protective in immunological and microbiological assays and questioned the suitability of this protein as a vaccine component. PorB, which is expressed at high levels on the surface of the meningococcus, has been implicated in mechanisms of pathogenesis and has also been used as a typing target in epidemiological investigations. In this work, using more precise estimates of selection pressures and recombination rates, we have shown that some residues in the surface loops of PorB are under very strong positive selection, as great as that observed in human immunodeficiency virus-1 surface glycoproteins, whereas amino acids within the loops and the membrane-spanning regions of the protein are under purifying selection, presumably because of structural constraints. Congruence tests showed that recombination occurred at a rate that was not sufficient to erase all phylogenetic similarity and did not greatly bias selection analysis. Homology models of PorB structure indicated that many strongly selected sites encoded residues that were predicted to be exposed to host immune responses, implying that this protein is under strong immune selection and requires further examination as a potential vaccine candidate. These data show that phylogenetic inference can be used to complement immunological and biochemical data in the choice of vaccine candidates.  相似文献   

14.
Lipopolysaccharide, lipooligosaccharide (LOS), or endotoxin is important in bacterial survival and the pathogenesis of gram-negative bacteria. A necessary step in endotoxin biosynthesis is 3-deoxy-D-manno-octulosonic acid (Kdo) glycosylation of lipid A, catalyzed by the Kdo transferase KdtA (WaaA). In enteric gram-negative bacteria, this step is essential for survival. A nonpolar kdtA::aphA-3 mutation was created in Neisseria meningitidis via allelic exchange, and the mutant was viable. Detailed structural analysis demonstrated that the endotoxin of the kdtA::aphA-3 mutant was composed of fully acylated lipid A with variable phosphorylation but without Kdo glycosylation. In contrast to what happens in other gram-negative bacteria, tetra-acylated lipid IV(A) did not accumulate. The LOS structure of the kdtA::aphA-3 mutant was restored to the wild-type structure by complementation with kdtA from N. meningitidis or Escherichia coli. The expression of a fully acylated, unglycosylated lipid A indicates that lipid A biosynthesis in N. meningitidis can proceed without the addition of Kdo and that KdtA is not essential for survival of the meningococcus.  相似文献   

15.
IgA1-specific proteinases (Igase) are acknowledged as a pivotal pathogenicity factor in meningococcus (Neisseria meningitidis) and in some related bacteria. These enzymes belong to trypsin-like clan of serine proteases. They exhibit high substrate selectivity being able to discriminate between IgA1 and IgA2. On the other hand, these enzymes are able to distinguish the human IgA1 from IgA1 of non-primate species of mammals. In addition to conventional IgA1-processing enzymes, alternative enzymes were recently reported to occur in meningococci. However, the substrate specificity of the conventional Igase, its role in pathogenesis, and ability to complement functionality remains obscure. Within the framework of the present project we studied the structure of the Igase genes and their products in two highly virulent N. meningitidis serogroup A strains M9 and A208. In particular, we succeeded to find both conventional and alternative Igase genes in each genome: nucleotide sequences of these genes were deposited in the NCBI Gene Bank under the access number AY770504, AY558158, AY558159. The DNA sequence of the conventional Igase was almost entirely conserved in the two strains, whereas the recently discovered alternative Igase (formerly known as meningococcal adhesine, type 1) exhibited occurrence of a variable region spanning about 900 bp in the 5'-terminal part of the gene. Conventional genes from both strains were expressed in E. coli rendering inclusion bodies. The recombinant products were used for immunization of rabbits and exhibited reaction with both recombinant and native antigen from the N. meningitidis cultural medium.  相似文献   

16.
Neisseria meningitidis is an important cause of septicemia and meningitis. To cause disease, the bacterium must successfully survive in the bloodstream where it has to avoid being killed by host innate immune mechanisms, particularly the complement system. A number of pathogenic microbes bind factor H (fH), the negative regulator of the alternative pathway of complement activation, to promote their survival in vivo. In this study, we show that N. meningitidis binds fH to its surface. Binding to serogroups A, B, and C N. meningitidis strains was detected by FACS and Far Western blot analysis, and occurred in the absence of other serum factors such as C3b. Unlike Neisseria gonorrhoeae, binding of fH to N. meningitidis was independent of sialic acid on the bacterium, either as a component of its LPS or its capsule. Characterization of the major fH binding partner demonstrated that it is a 33-kDa protein; examination of insertion mutants showed that porins A and B, outer membrane porins expressed by N. meningitidis, do not contribute significantly to fH binding. We examined the physiological consequences of fH bound to the bacterial surface. We found that fH retains its activity as a cofactor of factor I when bound to the bacterium and contributes to the ability of N. meningitidis to avoid complement-mediated killing in the presence of human serum. Therefore, the recruitment of fH provides another mechanism by which this important human pathogen evades host innate immunity.  相似文献   

17.
18.
Neisseria meningitidis (meningococcus) is an important cause of meningitis and sepsis. Currently, there is no effective vaccine against serogroup B meningococcal infection. Host defense against neisseriae requires the complement system (C) as indicated by the fact that individuals deficient in properdin or late C components (C6-9) have an increased susceptibility to recurrent neisserial infections. Because the classical pathway (CP) is required to initiate efficient complement activation on neisseriae, meningococci should be able to evade it to cause disease. To test this hypothesis, we studied the interactions of meningococci with the major CP inhibitor C4b-binding protein (C4bp). We tested C4bp binding to wild-type group B meningococcus strain (H44/76) and to 11 isogenic mutants thereof that differed in capsule expression, lipo-oligosaccharide sialylation, and/or expression of either porin (Por) A or PorB3. All strains expressing PorA bound radiolabeled C4bp, whereas the strains lacking PorA bound significantly less C4bp. Increased binding was observed under hypotonic conditions. Deleting PorB3 did not influence C4bp binding, but the presence of polysialic acid capsule reduced C4bp binding by 50%. Bound C4bp remained functionally active in that it promoted the inactivation of C4b by factor I. PorA-expressing strains were also more resistant to C lysis than PorA-negative strains in a serum bactericidal assay. Binding of C4bp thus helps Neisseria meningitidis to escape CP complement activation.  相似文献   

19.
A simple defined medium (neisseria defined medium) was devised that does not require iron extraction to produce iron-limited growth of Neisseria meningitidis (SDIC). Comparison of this medium to Mueller-Hinton broth and agar showed nearly identical growth rates and yields. The defined medium was used in batch cultures to determine the disappearance of iron from the medium and its uptake by cells. To avoid a number of problems inherent in batch culture, continuous culture, in which iron and dissolved oxygen were varied independently, was used. Most of the cellular iron was found to be nonheme and associated with the particulate fraction in sonically disrupted cells. Nonheme and catalase-heme iron were reduced by iron starvation far more than cytochromes b and c and N,N,N',N'-tetramethylphenylenediamine-oxidase. The respiration rate and efficiency also decreased under iron limitation, whereas generation times increased. The iron-starved meningococcus took up iron by an energy-independent system operating in the first minute after an iron pulse and a slower energy-dependent system inhibited by respiratory poisons and an uncoupler. The energy-dependent system showed saturation kinetics and was stimulated nearly fourfold by iron privation. In addition, to determine the availability to the meningococcus of the iron in selected compounds, a sensitive assay was devised in which an iron-limited continuous culture was pulsed with the iron-containing compound.  相似文献   

20.
Interaction with host cells is essential in meningococcal pathogenesis especially at the blood-brain barrier. This step is likely to involve a common regulatory pathway allowing coordinate regulation of genes necessary for the interaction with endothelial cells. The analysis of the genomic sequence of Neisseria meningitidis Z2491 revealed the presence of many repeats. One of these, designated REP2, contains a -24/-12 type promoter and a ribosome binding site 5 to 13 bp before an ATG. In addition most of these REP2 sequences are located immediately upstream of an ORF. Among these REP2-associated genes are pilC1 and crgA, described as being involved in steps essential for the interaction of N. meningitidis with host cells. Furthermore, the REP2 sequences located upstream of pilC1 and crgA correspond to the previously identified promoters known to be induced during the initial localized adhesion of N. meningitidis with human cells. This characteristic led us to hypothesize that at least some of the REP2-associated genes were upregulated under the same circumstances as pilC1 and crgA. Quantitative PCR in real time demonstrated that the expression of 14 out of 16 REP2-associated genes were upregulated during the initial localized adhesion of N. meningitidis. Taken together, these data suggest that these repeats control a set of genes necessary for the efficient interaction of this pathogen with host cells. Subsequent mutational analysis was performed to address the role of these genes during meningococcus-cell interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号