首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The susceptibility of Scots pine (Pinus sylvestris L.) sap- and heartwood against the wood decaying brown-rot fungus (Coniophora puteana) was investigated after long-term forest fertilization at three different sites in central Finland. Different wood properties: wood extractives, wood chemistry, and wood anatomy were used to explain sap- and heartwood decay. Scots pine sapwood was more susceptible to decay than its heartwood. In one site, sapwood seemed to be more resistant to wood decay after forest fertilization whereas the susceptibility of heartwood increased. Significant changes in the sapwood chemistry were found between treatment and sites, however, no relationship between wood chemistry and wood decay was observed in the factor analysis. The results of this study show that there was an inconsistent relationship between decay susceptibility and fertilization and the measured physical and chemical attributes of the wood were not consistently correlated with the decay rate.  相似文献   

2.
Several analytical methods were compared to evaluate characteristic wood decaying fungi for their potential to depolymerise lignin on spruce wood particles. Wood samples were treated with the white rot fungi Phlebia brevispora, Ceriporiopsis subvermispora, Merulius tremellosus, Pycnoporus sanguineus, Trametes pubescens and with the brown rot fungus Gloeophyllum trabeum. The UV absorbancies of crude ethanol extracts, total extractives content from sequential extraction, ligninolytic enzyme activities, lignin solubilisation and decrease of lignin content were compared. It was shown, that, in early decay stages, UV absorbancies of crude ethanol extracts and total extractives content correlate well with lignin degradation, increase of acid soluble lignin and increased production of ligninolytic enzymes (total peroxidase). Lignin content was determined using FT-NIR spectroscopy as well as by wet-chemical analysis, indicating a very good correlation between the two methods. According to the different analytical methods, the tested fungi can be classified into three categories based on their characteristic behaviour: brown rot, “slow” and “fast” white rot.  相似文献   

3.
The natural durability of four Argentinean species of Prosopis and one of Acacia was evaluated in laboratory tests, according to European standards, using three brown rot and one white rot fungi. These tests were complemented by assessing the wood chemical composition. All the species were from moderately slightly durable to very durable (classes 4–1), and in all cases the heartwood was the most resistant to fungal attack. Chemical extractives content (organic, aqueous, tannic and phenolic) was higher in the heartwood. However, species durability was not related to extractive contents nor with wood density. Instead, it is possible that extractives could contribute to natural durability in different ways, including the effects related to the antioxidant properties of some of them.  相似文献   

4.
Natural decay resistance of teak wood grown in home-garden forestry and the factors influencing decay resistance were determined in comparison with that of a typical forest plantation. Accelerated laboratory tests were conducted on 1800 wood samples drawn from 15 trees of three planted sites. Analysis of variance based on a univariate mixed model showed that planted site, fungal species, and their interaction terms were important sources of variation in decay resistance. With increasing decay resistance from centre to periphery of the heartwood, radial position was a critical factor and the interaction effect of fungal species × radial position was significant in influencing the durability. No significant differences were found in decay resistance either between the opposite radii or due to the various possible interaction terms of radii with the site, fungal species and radial position. There were significant differences in decay resistance against brown-rot fungi between wet and dry sites of home-garden teak although differences against white-rot fungi were non-significant among the three planted sites. Polyporus palustris was the more aggressive brown-rot fungus than Gloeophyllum trabeum. The higher susceptibility of wet site home-garden teak to brown-rot decay was associated with a paler colour of the wood and lower extractive content.  相似文献   

5.
White-rot fungi possess the unique ability to degrade and mineralize all the different components of wood. In other respects, wood durability, among other factors, is due to the presence of extractives that are potential antimicrobial molecules. To cope with these molecules, wood decay fungi have developed a complex detoxification network including glutathione transferases (GST). The interactions between GSTs from two white-rot fungi, Trametes versicolor and Phanerochaete chrysosporium, and an environmental library of wood extracts have been studied. The results demonstrate that the specificity of these interactions is closely related to the chemical composition of the extracts in accordance with the tree species and their localization inside the wood (sapwood vs heartwood vs knotwood). These data suggest that the fungal GSTome could reflect the chemical environment encountered by these fungi during wood degradation and could be a way to study their adaptation to their way of life.  相似文献   

6.
Larch heartwood is appreciated for its good mechanical properties, its colour and its texture, and it is often used outdoors because of its natural durability (decay resistance). In this study the colour of larch heartwood was studied in relation to extractives and decay resistance, with the aim to estimate durability of larch heartwood from its colour. On a total of 293 trees colour in the CIE L*a*b* space (L* lightness, a* red/green axis, b* yellow/blue axis), extractives content (acetone and hot-water extractives, amount of phenolics) and the brown-rot decay resistance were determined. For calculating the relative decay resistance ( x), mass loss after inoculation for 16 weeks with two fungi [ Coniophora puteana (Schum.ex.Fr.) Karst., Poria placenta (Fr.) Cke, European standard EN 113] of larch heartwood samples was compared to Scots pine ( Pinus sylvestris L) sapwood reference samples (EN 350-1). Different species [Japanese larch ( Larix kaempferi Lamb.), Hybrid larch (Larix deciduax L. kaempferi) and European larch ( L. decidua Mill.)], provenances and age classes (38-year, >150-year) were included. Japanese larch heartwood turned out to be significantly more reddish (higher a*-values) compared to the European larch provenances. Reddishness of the hybrids was intermediate. The red hue (+a*) was strongly correlated with the amount of phenols ( r =0.84) and decay resistance ( r =0.63) and therefore suitable for prediction of both parameters. The results suggest that colour measurements of larch heartwood could be of benefit in tree breeding programs and for an optimised utilization of larch timber.  相似文献   

7.
We focused in selecting four fungi, naturally living in Eucalyptus sp. fields, for application in accelerating stump decay. The wood-rot fungi Pycnoporus sanguineus (Ps), Lentinus bertieri (Lb) and Xylaria sp. (Xa) were isolated from Eucalyptus sp. field and the fungus Lentinula edodes (Led) was obtained from a commercial strain. All fungi were studied according to their capacity to degrade eucalyptus urograndis wood. In order to evaluate mass losses of seven years old eucalyptus urograndis' wood test blocks from heartwood were prepared added to glass flasks with red clay soil. The humidity of the soil was adjusted with 50 and 100% of its water retention capacity. Mass loss evaluations occurred at 30 until 120 days after eucalyptus wood degradation. Chemical analysis and soil pH were measured only in the last evaluation. Mycelial growth assays with potato-dextrose-agar, malt-agar and sawdust-dextrose-agar at three temperatures was carried out in order to get information about the best conditions of fungi growth. On the 120th day, Ps and Lb showed good capacity of wood degradation by leading to a high mass loss in soil with highest humidity. These fungi were the best consumers of lignin, hemicellulose, cellulose and extractives, caused acidification in the soil. Ps and Lb had faster mycelial growth in sawdust-dextrose-agar, especially in high temperature, comparing to Xa and Led. Xa and Led are not good eucalyptus urograndis heartwood degraders, because they consume preferentially hemicellulose.  相似文献   

8.
A high-performance liquid chromatography (HPLC) method based on the evolution of wood extractives was developed to follow the first stages of fungal degradation of beech wood exposed to Coriolus versicolor. The nature and the quantity of the extracts initially present in wood depended on the extraction conditions and also on the wood-drying conditions (time and temperature). The most interesting fraction was soxhlet extracted with acetone at 56 °C for 6 h. The best conditions to avoid extractives degradation consisted of a moderate drying at 55 °C for 48 h allowing identification of catechin as potential tracer. After 2 weeks of wood blocks exposure to C. versicolor, analysis of their acetonic extractives showed that catechin signal initially detected in beech wood, had totally disappeared. Treatment of wood with an appropriate fungicide such as propiconazole before exposure to C. versicolor, prevents the catechin amount from any variation. The comparison of these results with the classical weight loss (WL) measurements obtained after long-time experiments on treated and untreated wood blocks shows that the catechin amount evolution, monitored during 2 weeks, correlates with the wood resistance evaluated during 16 weeks, allowing the use of this flavonoid as a valuable biomarker of wood decay.  相似文献   

9.
We previously proposed that extractives in highly durable heartwood may protect wood against fungal colonization and subsequent degradation by dual mechanisms: the extractives have some fungicidal activity and are also free radical scavengers (antioxidants). In short-term laboratory decay tests using two different wood species and decay fungi, the antioxidant 2,6-dimethyl-di-tert-butyl-4-methylphenol (BHT) alone had little or no preservative effect. In contrast, the combination of BHT with different organic commercial biocides always showed an increase in efficacy compared to the organic biocide alone. Consequently, we conclude that the combination of a commercial antioxidant and biocide is synergistic. This implies that extractives may protect wood by more than simply being fungicidal.  相似文献   

10.
Among the great diversity of insect–fungus associations, fungal mimicry of termite eggs is a particularly fascinating consequence of evolution. Along with their eggs, Reticulitermes termites often harbour sclerotia of the fungus Fibularhizoctonia sp., called ‘termite balls’, giving the fungus competitor‐free habitat within termite nests. The fungus has evolved sophisticated morphological and chemical camouflage to mimic termite eggs. To date, this striking insect–fungus association has been found in eight temperate termite species, but is restricted to the lower termite genera Reticulitermes and Coptotermes. Here, we report the discovery of a novel type of termite ball (‘Z‐type’) in the subtropical termite, Nasutitermes takasagoensis. Phylogenetic analysis indicated that the Z‐type termite ball is an undescribed Trechisporoid fungus, Trechispora sp., that is phylogenetically distant from Fibularhizoctonia, indicating two independent origins of termite‐egg mimicry in sclerotium‐forming fungi. Egg protection bioassays using dummy eggs revealed that Reticulitermes speratus and N. takasagoensis differ in egg‐size preference. A comparative study of termite ball size and egg‐size preference of host termites showed that both fungi evolved a termite ball size that optimized the acceptance of termite balls as a unit investment. Termite‐egg mimicry by these fungi offers a model case of parallel evolution. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 531–537.  相似文献   

11.
Nanotechnology has the potential to affect the field of wood preservation through the creation of new and unique metal biocides with improved properties. This study evaluated leachability and efficacy of southern yellow pine wood treated with copper, zinc, or boron nanoparticles against mould fungi, decay fungi, and Eastern subterranean termites. Results showed that nanocopper with and without surfactant, nanozinc, and nanozinc plus silver with surfactant resisted leaching compared with metal oxide controls. Nearly all nanoboron and boric acid was released from the treated wood specimens during leaching. Mould fungi were moderately inhibited by nanozinc oxide with surfactant, but the other nanometal preparations did not significantly inhibit mould fungi. Mass loss from Gloeophyllum trabeum was significantly inhibited by all copper preparations, while Antrodia sp. was not inhibited by nanometal treatments. Nanometals imparted high resistance in southern yellow pine to the white-rot fungus, Trametes versicolor. Unleached specimens treated with nanoboron or nanozinc plus surfactant caused 100% and 31% mortality, respectively. All specimens treated with nanozinc or nanozinc plus silver inhibited termite feeding, but the copper treatments were less effective against termites. Nanozinc possessed the most favorable properties: leach resistance, termite mortality, and inhibition of termite feeding and decay by the white-rot fungus.  相似文献   

12.
The aim of this study was to compare natural durability of Siberian larch heartwood grown in Siberia and Sweden as well as European larch and Scots pine heartwood grown in Sweden. The study was based on standard in- and above ground tests lasting 12 years but laboratory decay tests with white and brown rot fungi was also included. Field test results showed that Siberian larch heartwood from Siberia was the most durable among the studied heartwoods with a decay index of 60 after 12 years in Simlångsdalen (Sweden), while European larch heartwood grown in Sweden, was decayed to failure before the end of the test. Scots pine heartwood was found to perform similarly to Siberian larch from Siberia. No relationship could be established between natural durability of examined heartwoods and their water absorption behavior; however, strong correlation to the total amount of extractives was observed. Scots pine and Siberian larch heartwood from Siberia had 12.7 and 19.6% total extractives content respectively but the extractives composition differs. The study revealed also that lignin and monosaccharide content could not explain the variations in decay resistance of the studied heartwoods. No similarities in the natural durability revealed by laboratory and field tests were observed.  相似文献   

13.
Metallic-based wood preservatives currently face some restrictions over disposal and environmental issues; one possibility to develop new more benign systems is to study extractives in naturally durable woody plants. This study investigated the resistance of extracts from the leaf, fruit, wood, bark, seed and flower of Cerbera odollam to deterioration from fungus and termites. Antifungal assays with n-hexane, ethyl acetate, ethanol and methanol extracts were evaluated using paper discs. Termite mortality was evaluated with the methanol extract against Coptotermes gestroi. Physical and protective properties of particleboard impregnated with C. odollam extracts, including thickness swelling, internal bond strength, formaldehyde release, termite-decay and soil burial decay were investigated. Methanol wood extracts from C. odollam showed the highest activities against Trametes versicolor, Pycnoporus sanguineus, and Schizophyllum commune in the paper disc antifungal assay. Methanol flower extracts exhibited high performance in termite mortality, termite-decay and soil burial decay. Thickness swelling, internal bond strength and the formaldehyde emission of particleboard specimens treated with methanol extracts of C. odollam were up to the EN Standards.  相似文献   

14.
In Norway spruce, a fungistatic reaction zone with a high pH and enrichment of phenolics is formed in the sapwood facing heartwood colonized by the white-rot fungus Heterobasidion parviporum. Fungal penetration of the reaction zone eventually results in expansion of this xylem defense. To obtain information about mechanisms operating upon heartwood and reaction zone colonization by the pathogen, hyphal growth and wood degradation were investigated using real-time PCR, microscopy, and comparative wood density analysis of naturally colonized trees with extensive stem decay. The hyphae associated with delignified wood at stump level were devoid of any extracellular matrix, whereas incipient decay at the top of decay columns was characterized by a carbohydrate-rich hyphal sheath attaching hyphae to tracheid walls. The amount of pathogen DNA peaked in aniline wood, a narrow darkened tissue at the colony border apparently representing a compromised region of the reaction zone. Vigorous production of pathogen conidiophores occurred in this region. Colonization of aniline wood was characterized by hyphal growth within polyphenolic lumen deposits in tracheids and rays, and the hyphae were fully encased in a carbohydrate-rich extracellular matrix. Together, these data indicate that the interaction of the fungus with the reaction zone involves a local concentration of fungal biomass that forms an efficient translocation channel for nutrients. Finally, the enhanced production of the hyphal sheath may be instrumental in lateral expansion of the decay column beyond the reaction zone boundary.To grow to great heights, trees continually replace their water- and nutrient-conducting elements. Older elements, such as the heartwood that is formed in many trees, gradually become nonconductive. In contrast to the living sapwood, heartwood lacks active defense mechanisms against microbes. However, lignin, the polymer coating cell wall polysaccharides, is highly resistant to microbial degradation. In fact, white-rot fungi, besides having evolved the ability to tolerate or detoxify the secondary metabolites accumulating in heartwood, are the only organisms capable of efficiently degrading lignin. Following establishment in the heartwood of living trees, the colonies of pathogenic white-rot fungi expand and eventually also threaten the conductive sapwood.The white-rot fungus Heterobasidion annosum sensu lato, composed of three species with overlapping geographic distributions and host ranges in Europe (23), is the most important pathogen of Norway spruce (Picea abies L. Karst) in boreal forests. Primary infection of Norway spruce stands by H. annosum sensu lato takes place through fresh thinning stumps or wounds on roots and at the base of the stem. Basidiospores landing on these entrance points give rise to mycelia which colonize the root systems, and eventually the fungus spreads into the stem heartwood. At sites infested with Heterobasidion parviporum, a species primarily restricted to Norway spruce, roots of saplings can become infected by the fungus after around 10 years of growth (25). Stem colonization usually initiates only after the heartwood has started to develop, which in Norway spruce takes place in trees 25 to 40 years old (17). Due to relatively rapid axial spread within heartwood, the decay column caused by H. annosum sensu lato often is up to 10 m high in the stems of mature Norway spruce trees.In response to sapwood challenge by an expanding heartwood-based colony of H. annosum sensu lato, Norway spruce forms a so-called reaction zone (RZ) in the border area between healthy sapwood and colonized heartwood. This xylem defense is characterized by high pH due to increased carbonate content and enrichment of phenolic compounds, particularly lignans, some of which have shown antifungal properties in bioassays (14, 30, 31). Although several wood decay fungi are able to eventually penetrate the RZ regions formed in trees, the strategies employed by fungi to breach these unique defense barriers are poorly understood (24). The purpose of this study was to obtain information about the mechanisms operating in heartwood colonization and expansion of the decay column via penetration of the RZ. To do this, we examined spatial growth of H. parviporum and the associated substrate exploitation patterns within naturally colonized mature stems of Norway spruce.  相似文献   

15.
This study evaluated the relative ability of various combinations of copper sulfate with either boric acid or calcium-precipitating agent, N′-N-(1, 8-naphthalyl) hydroxylamine (NHA-Na), to inhibit fungal degradation and attack by Formosan subterranean termites (Coptotermes formosanus Shiraki). Wood specimens were treated with either 1%, 0.5%, or 0.1% concentrations of copper sulfate, boric acid, NHA-Na, copper sulfate + boric acid, or copper sulfate + NHA-Na mixtures. Treated specimens were subjected to laboratory decay-resistance tests by using petri dishes inoculated with the Basidiomycetes fungi Tyromyces palustris and Trametes versicolor for 12 weeks. Treated wood specimens were also subjected to termite-resistance tests under laboratory conditions. Increased efficacy of copper sulfate against the brown-rot fungus T. palustris was observed when either boric acid or NHA-Na was added. The most effective treatments against the fungi tested were NHA-Na only treatments at 1% and 0.5% concentration levels. Boric acid treatments were not able to protect wood against decay after leaching because of excessive leaching of boron. Similar results were obtained in termite-resistance tests in comparison with decay-resistance tests. These results indicate that the efficacy of the treatments in preventing fungal and termite attack is a function of the type of preservative.  相似文献   

16.
Extractable materials from some timber species have been identified which prevent wood decay; however, little has been reported on the effect(s) of such materials against mould species that colonize timber. With increasing interest in the use of Trichoderma species, both as agents of permeability enhancement and biological control, more information is required on how chemical components within fresh and processed timber influence growth of Trichoderma. Fresh and dried samples of Scots pine and Sitka spruce sapwood and heartwood were leached in a Soxhlet apparatus and the resulting extract was combined with malt extract agar and inoculated with Trichoderma. Trichoderma isolates were inhibited to varying degrees by extractives removed from fresh and dried heartwood of the two timbers. Growth on sapwood extractives, however, showed a lesser degree of inhibition. The implications of the results for applications of Trichoderma in timber are discussed.  相似文献   

17.
The cell wall chemistry (amount of hemicellulose, f-cellulose, and total lignin) and the concentration of extractives (total acetone-soluble extractives, resin acids, pinosylvins and the total phenolics quantified as tannin acid equivalents) were studied in brown-rot resistant and susceptible juvenile heartwood of Scots pine (Pinus sylvestris L.). The study material consisted of a total of 18 trees from two 34-year-old progeny trials at Korpilahti and Kerimäki. The trees were selected from among 783 trees whose decay rate had previously been screened in a laboratory test using a brown-rot fungus, Coniophora puteana. Samples from neither location showed any significant difference in the concentration (mg/cm3) of hemicellulose, f-cellulose and total lignin between the decay resistant and susceptible trees. At both locations only the concentration of total phenolics was higher in the decay-resistant heartwood than in the decay-susceptible heartwood. At Korpilahti, the amount of acetone-soluble extractives and the concentration of pinosylvin and its derivatives were higher in the resistant than in the susceptible trees.  相似文献   

18.
In this work, the resistance of black pine wood (Pinus nigra L.) vacuum-treated with zinc oxide, zinc borate and copper oxide nanoparticles against mold and decay fungi and the subterranean termites was evaluated. Some of the nanocompounds tested were forced with acrylic emulsions to avoid leaching. Results showed that mold fungi were slightly inhibited by nanozinc borate, while the other nanometal preparations did not inhibit mold fungi. Mass loss from fungal attack by Trametes versicolor was significantly inhibited by the zinc-based preparations, while the brown-rot fungus, Tyromyces palustris was not inhibited by the nanometal treatments. Notably, nanozinc borate plus acrylic emulsion imparted very high resistance in pine wood to the white-rot fungus, T. versicolor with a mass loss of 1.8%. Following leaching, all pine specimens treated with nanozinc borate, with or without acrylic emulsion, strongly inhibited termite feeding, i.e. mass losses varying at 5.2–5.4%. In contrast, the copper-based treatments were much less effective against the subterranean termites, Coptotermes formosanus. In general, nanozinc borate possessed favorable properties, that is, inhibition of termite feeding and decay by T. versicolor.  相似文献   

19.
Fungal communities within a naturally fallen bough of Japanese beech (Fagus crenata) were investigated with reference to chemical properties of decay columns. Five logs were cut out from the fallen bough, which ranged from 10.7 to 20.5 cm in diameter. Nine fungal species and one sterile fungus were isolated from decay columns that elongated along a longitudinal axis and were delimited by black zone lines and wood discoloration. Lampteromyces japonicus and Trichoderma spp. were isolated from all five logs. Lampteromyces japonicus and Antrodiella albocinnamomea occupied the largest volume in the logs. Lignin and carbohydrate contents, lignocellulose index (LCI), nitrogen content, and water content were different among decay columns colonized by different fungal species in each log. In L. japonicus, LCI of decay column was correlated to that of wood blocks decayed under pure culture condition by the fungi isolated from the decay columns. These results suggest that the small-scale variation in chemical properties within fallen logs of Japanese beech reflects the distribution and the decay ability of colonized fungi.  相似文献   

20.
Togolese teak (Tectona grandis L.f) is highly resistant to pathogen attack, but variability in natural durability exists between trees of different ages, plantations and geographical zones. Therefore, further information concerning this parameter of wood quality is necessary; however, traditional testing methods are difficult and time-consuming to carry out. We tested the possibility of using colorimetry to determine durability in heartwood samples taken from a wide range of trees.Twelve hundred samples from 31 trees were exposed to four fungi: Pycnoporus sanguineus, Antrodia sp., Gloephylum trabeum, and Coriolus versicolor. Wood samples were grouped into three classes (inner, intermediate and outer heartwood). The colour parameters of each sample were then determined using the CIELAB (L*, a*, b*) system and results correlated with the %mass loss of wood after fungal attack. Tests showed that Antrodia sp. and C. versicolor resulted in <20% mass loss, whereas all samples were rated as durable or highly durable with regard to P. sanguineus and G. trabeum. Inner heartwood was found to be the most resistant to pathogen attack and outer heartwood the least.Measurements of colour showed that heartwood was lightest nearest the pith and darkness and redness increased towards the outer heartwood. Regressions of lightness with %mass loss in the durability tests were always highly significant, whereas a* and b* were not always significantly regressed with %mass loss. Therefore, the use of colorimetry as a tool to estimate short-term natural durability both rapidly and cheaply could be considered in the case of plantation grown teak wood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号