首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
This review is focused on specific circuits of the medial temporal lobe that have become better understood in recent years for their computational properties contributing to episodic memory and to memory impairment associated with aging and other risk for AD. The layer II neurons in the entorhinal cortex and their targets in the dentate gyrus and CA3 region of hippocampus comprise a system that rapidly encodes representations that are distinct from prior memories. Frank neuron loss in the entorhinal cortex is specific for AD, and related structural and functional changes across the network comprised of the entorhinal cortex and the dentate/CA3 regions hold promise for predicting progression on the path to AD.  相似文献   

3.
Abnormal proteinaceous deposits are found in the brain of patients with many different neurodegenerative diseases. In many of these diseases, the production of the deposits is probably associated with disease pathogenesis. In Alzheimer's disease (AD), the amyloid protein (A beta), is produced by the action of enzymes known as secretases, which cleave the beta-amyloid protein precursor. A beta is secreted from cells in the brain, after which it oligomerizes and is deposited in the extracellular compartment of the brain to form amyloid plaques and amyloid angiopathy. Targeting the production of A beta and its aggregation is now a key strategy in the development of novel therapeutic agents for the treatment of AD. This review examines the potential of immunization strategies, cholesterol-lowering drugs, protease inhibitors and nicotinic drugs for the treatment of AD.  相似文献   

4.
The precise pathological events that cause cognitive deficits in Alzheimer's disease remain to be determined. The most widely held view is that accumulation of amyloid beta peptide initiates the disease process; however, with more than eighteen amyloid-based therapeutic candidates currently in clinical trials, the targeting of amyloid alone may not be sufficient to improve functional deficits over the course of the disease. Alternative targets, such as the tau protein and apolipoprotein E, have thus been increasingly investigated, and in the future, therapeutic strategies will likely address events that are upstream of a more broadly construed pathological cascade that includes but is not limited to the generation and accumulation of amyloid beta. Consideration of such events provides the basis for an "indirect amyloid hypothesis," for which data are beginning to emerge. Although it is clinically defined by simple post-mortem criteria, Alzheimer's disease likely has a complex etiology, and effective treatments for this disease will become ever more urgent as the world's population ages.  相似文献   

5.
An electrochemical method for the investigation and comparison of anti-Alzheimer medications that is based on the inhibition of the acetylcholinesterase is presented. The developed amperometric biosensor determines the in-vitro inhibition of the acetylcholinesterase that is co-immobilized with choline oxidase on the working electrode surface of a three-electrode system using gel entrapment. The sensor has been applied to determine the IC50 values of two known and one newly developed Alzheimer remedy. A simultaneous measurement with the photometric standard method shows the applicability of our method for fast drug screening.  相似文献   

6.
Alzheimer's disease is a progressive neurodegenerative disorder characterised by the gradual onset of dementia. The pathological hallmarks of the disease are beta-amyloid (Abeta) plaques, neurofibrillary tangles, synaptic loss and reactive gliosis. The current therapeutic effort is directed towards developing drugs that reduce Abeta burden or toxicity by inhibiting secretase cleavage, Abeta aggregation, Abeta toxicity, Abeta metal interactions or by promoting Abeta clearance. A number of clinical trials are currently in progress based on these different therapeutic strategies and they should indicate which, if any, of these approaches will be efficacious. Current diagnosis of Alzheimer's disease is made by clinical, neuropsychologic and neuroimaging assessments. Routine structural neuroimaging evaluation with computed tomography and magnetic resonance imaging is based on non-specific features such as atrophy, a late feature in the progression of the disease, hence the crucial importance of developing new approaches for early and specific recognition at the prodromal stages of Alzheimer's disease. Functional neuroimaging techniques such as functional magnetic resonance imaging, magnetic resonance spectroscopy, positron emission tomography and single photon emission computed tomography, possibly in conjunction with other related Abeta biomarkers in plasma and CSF, could prove to be valuable in the differential diagnosis of Alzheimer's disease, as well as in assessing prognosis. With the advent of new therapeutic strategies there is increasing interest in the development of magnetic resonance imaging contrast agents and positron emission tomography and single photon emission computed tomography radioligands that will permit the assessment of Abeta burden in vivo.  相似文献   

7.
Age-related macular degeneration (AMD) is a common condition among the elderly population that leads to the progressive central vision loss and serious compromise of quality of life for its sufferers. It is also one of the few disorders for whom the investigation of its genetics has yielded rich insights into its diversity and causality and holds the promise of enabling clinicians to provide better risk assessments for individuals as well as to develop and selectively deploy new therapeutics to either prevent or slow the development of disease and lessen the threat of vision loss. The genetics of AMD began initially with the appreciation of familial aggregation and increase risk and expanded with the initial association of APOE variants with the disease. The first major breakthroughs came with family-based linkage studies of affected (and discordant) sibs, which identified a number of genetic loci and led to the targeted search of the 1q31 and 10q26 loci for associated variants. Three of the initial four reports for the CFH variant, Y402H, were based on regional candidate searches, as were the two initial reports of the ARMS2/HTRA1 locus variants. Case-control association studies initially also played a role in discovering the major genetic variants for AMD, and the success of those early studies have been used to fuel enthusiasm for the methodology for a number of diseases. Until 2010, all of the subsequent genetic variants associated with AMD came from candidate gene testing based on the complement factor pathway. In 2010, several large-scale genome-wide association studies (GWAS) identified genes that had not been previously identified. Much of this historical information is available in a number of recent reviews (Chen et al., 2010b; Deangelis et al., 2011; Fafowora and Gorin, 2012b; Francis and Klein, 2011; Kokotas et al., 2011). Large meta analysis of AMD GWAS has added new loci and variants to this collection (Chen et al., 2010a; Kopplin et al., 2010; Yu et al., 2011). This paper will focus on the ongoing controversies that are confronting AMD genetics at this time, rather than attempting to summarize this field, which has exploded in the past 5 years.  相似文献   

8.
9.
10.
MYC on the path to cancer   总被引:2,自引:0,他引:2  
Dang CV 《Cell》2012,149(1):22-35
The MYC oncogene contributes to the genesis of many human cancers. Recent insights into its expression and function have led to therapeutic opportunities. MYC's activation by bromodomain proteins could be inhibited by drug-like molecules, resulting in tumor inhibition in?vivo. Tumor growth can also be curbed by pharmacologically uncoupling bioenergetic pathways involving glucose or glutamine metabolism from Myc-induced cellular biomass accumulation. Other approaches to halt Myc on the path to cancer involve targeting Myc-Max dimerization or Myc-induced microRNA expression. Here the richness of our understanding of MYC is reviewed, highlighting new biological insights and opportunities for cancer therapies.  相似文献   

11.
Alzheimer's disease (AD) is one of the most common dementing disorders and has profound medical and social consequences. The initiating molecular event is unknown, and its pathophysiology is highly complex. However, free radical injury appears to be a fundamental process contributing to the neuronal death seen in this disorder, and many studies using surrogate markers of oxidative damage have provided evidence supporting this hypothesis. Various compounds with antioxidant ability attenuated the oxidative stress induced by amyloid beta-protein (Abeta) in studies done in vitro and in vivo. Moreover, various antioxidants have been reported to inhibit the formation and extension of beta-amyloid fibrils (fAbeta), as well as to destabilize preformed fAbeta in vitro. In cell culture experiments, destabilized fAbeta were suggested to be less toxic than intact fAbeta. In transgenic mice model studies, some antioxidant compounds reduced plaque burden in vivo. In this article, we review the recent advances in the research on the antioxidants that inhibit the formation of fAbeta, as well as destabilize preformed fAbeta. Although the mechanisms by which these compounds inhibit fAbeta formation from Abeta, and destabilize preformed fAbeta are still unclear, they could be key molecules for the development of preventives and therapeutics for AD.  相似文献   

12.
Multicellular life has evolved many times, yet each origin requires free cells to integrate unselfishly into a higher-level individual. How can such transitions evolve? In a new paper, Herron and Michod investigate the recent origins of multicellularity in colonial algae. Their phylogenetic reconstructions provide a striking dissection of early steps, and altruistic traits are at the crux of it. Key evolutionary reversals are also revealed, where cellular selfishness might have thwarted multicellular integration.  相似文献   

13.
14.
Synaptic pathology and mitochondrial oxidative damage are early events in Alzheimer's disease (AD) progression. Loss of synapses and synaptic damage are the best correlates of cognitive deficits found in AD patients. Recent research on amyloid beta (Aβ) and mitochondria in AD revealed that Aβ accumulates in synapses and synaptic mitochondria, leading to abnormal mitochondrial dynamics and synaptic degeneration in AD neurons. Further, recent studies using live-cell imaging and primary neurons from amyloid beta precursor protein (AβPP) transgenic mice revealed reduced mitochondrial mass, defective axonal transport of mitochondria and synaptic degeneration, indicating that Aβ is responsible for mitochondrial and synaptic deficiencies. Tremendous progress has been made in studying antioxidant approaches in mouse models of AD and clinical trials of AD patients. This article highlights the recent developments made in Aβ-induced abnormal mitochondrial dynamics, defective mitochondrial biogenesis, impaired axonal transport and synaptic deficiencies in AD. This article also focuses on mitochondrial approaches in treating AD, and also discusses latest research on mitochondria-targeted antioxidants in AD. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.  相似文献   

15.
16.
Bringing diabetes therapeutics to the big screen   总被引:3,自引:0,他引:3  
  相似文献   

17.
18.
Cells sense and respond to physical stresses through mechanotransduction, a process that converts mechanical stimuli into biochemical signals. The bending of primary cilia has now been shown to modulate TOR signalling to negatively regulate cell size.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号