首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mitogen-activated protein (MAP) kinases have been suggested as potential mediators for interleukin 1beta (IL-1beta)-induced gene activation. This study investigated the role of the MAP kinases p38 and ERK2 in IL-1beta-mediated expression of the chemokine MCP-1 by human mesangial cells. Phosphorylation of p38 kinase, which is necessary for activation, increased significantly after IL-1beta treatment. p38 kinase immunoprecipitated from IL-1beta-treated cells phosphorylated target substrates to a greater extent than p38 kinase from controls. SB 203580, a selective p38 kinase inhibitor, was used to examine the role of p38 kinase in MCP-1 expression. SB 203580 decreased IL-1beta-induced MCP-1 mRNA and protein levels, but did not affect MCP-1 mRNA stability. Because NF-kappaB is necessary for MCP-1 gene expression, the effect of p38 kinase inhibition on IL-1beta induction of NF-kappaB was measured. SB 203580 (up to 25 microM) had no effect on IL-1beta-induced NF-kappaB nuclear translocation or DNA binding activity. Our previous work showed that IL-1beta also activates the MAP kinase ERK2 in human mesangial cells. PD 098059, a selective inhibitor of the ERK activating kinase MEK1, had no effect on IL-1beta-induced MCP-1 mRNA or protein levels, or on IL-1beta activation of NF-kappaB. These data indicate that p38 kinase is necessary for the induction of MCP-1 expression by IL-1beta, but is not involved at the level of cytoplasmic activation of NF-kappaB. In contrast, ERK2 does not mediate IL-1beta induced MCP-1 gene expression.  相似文献   

3.
4.
The role of A- and B-type natriuretic peptides (ANP and BNP) in cardiac pathophysiology are of increasing interest. Isolated neonatal mouse cardiac myocytes express increased levels of ANP mRNA in the absence of growth factors in culture. Expression of ANP and BNP mRNA has not been studied in isolated adult mouse cardiac myocytes (AMCM). We examined expression of ANP and BNP mRNA in isolated AMCM with and without stimulation with beta-adrenergic receptor agonists and antagonists. AMCM were isolated and maintained in culture for 24-48 h with and without stimulation with the beta-adrenergic receptor agonist isoproterenol (Iso), the beta1-antagonist CGP20712A (CGP), or the beta2-antagonist ICI-118,551 (ICI). Northern blot analysis was performed using probes for mouse ANP and BNP mRNA. TUNEL assay was performed after beta-adrenergic receptor stimulation of AMCM. BNP mRNA expression was increased fivefold (P < 0.001) after 48 h in culture without adrenergic stimulation. BNP mRNA expression was reduced (P < 0.0001) after stimulation with Iso while ANP expression remained similar to unstimulated cells. CGP prevented the Iso reduction in BNP mRNA. Iso stimulation at doses that reduced BNP mRNA expression increased TUNEL positive nuclei, an effect blocked by the beta1-antagonist CGP. In conclusion, we have demonstrated differential gene expression of ANP and BNP in AMCM in culture. Expression of BNP mRNA increases in AMCM in culture and beta1-adrenergic receptor stimulation attenuates increased BNP gene expression and results in apoptosis.  相似文献   

5.
6.
7.
Macrophages are activated during an inflammatory response and produce multiple inflammatory cytokines. IL-18 is one of the most important innate cytokines produced from macrophages in the early stages of the inflammatory immune response. Monocyte chemoattractant protein (MCP-1) is expressed in many inflammatory diseases such as multiple sclerosis and rheumatoid arthritis, and its expression is correlated with the severity of the disease. Both IL-18 and MCP-1 have been shown to be involved in inflammatory immune responses. However, it has been unclear whether IL-18 is involved in the induction of MCP-1. This investigation was initiated to determine whether IL-18 can induce MCP-1 production, and if so, by which signal transduction pathways. We found that IL-18 induced the production of MCP-1 in macrophages, which was IL-12-independent and was not mediated by autocrine cytokines such as IFN-gamma or TNF-alpha. We then examined signal transduction pathways involved in IL-18-induced MCP-1 production. We found that IL-18 did not activate the IkappaB kinase/NF-kappaB pathway, evidenced by no degradation of IkappaBalpha and no translocation of NF-kappaB p65 to the nucleus in IL-18-stimulated macrophages. Instead, IL-18 activated the PI3K/Akt and MEK/ERK1/2 pathways. Inhibition of either of these pathways attenuated MCP-1 production in macrophages, and inhibition of both signaling pathways resulted in the complete inhibition of MCP-1 production. On the basis of these observations, we conclude that IL-18 induces MCP-1 production through the PI3K/Akt and MEK/ERK1/2 pathways in macrophages.  相似文献   

8.
Gastrins, cholecystokinins and gastrointestinal cancer   总被引:2,自引:0,他引:2  
  相似文献   

9.
10.
11.
12.
Thrombin has been shown to increase expression of chemokines such as monocyte chemoattractant protein 1 (MCP-1) in endothelial cells, leading to the development of atherosclerosis. However, the precise mechanism of this induction remains unknown. In the present study, we investigated whether the small G protein RhoA, and its effector, Rho-kinase are involved in MCP-1 induction by thrombin in endothelial cells. Y-27632, a specific Rho-kinase inhibitor, potently inhibited MCP-1 induction by thrombin. Y-27632 significantly decreased the chemotactic activity of thrombin-stimulated supernatants of endothelial cells on monocytes. Importantly, fasudil, a specific Rho-kinase inhibitor, attenuated MCP-1 gene expression in the aorta of db/db mice. Y-27632 attenuated thrombin-mediated phosphorylation of p38MAPK and p65, indicating that Rho-kinase mediates thrombin-induced MCP-1 expression through p38MAPK and NF-κB activation. Our findings demonstrate that the Rho/Rho-kinase signaling pathway plays a critical role in thrombin-mediated MCP-1 expression and function, and suggest that Rho/Rho-kinase may be an important target in the development of new therapeutic strategies for atherosclerosis.  相似文献   

13.
Brain natriuretic peptide (BNP) produced by cardiac myocytes has antifibrotic and antigrowth properties and is a marker of cardiac hypertrophy. We previously showed that prostaglandin E2 (PGE2) is the main prostaglandin produced in myocytes treated with proinflammatory stimuli and stimulates protein synthesis by binding to its EP4 receptor. We hypothesized that PGE2, acting through EP4, also regulates BNP gene expression. We transfected neonatal ventricular myocytes with a plasmid encoding the human BNP (hBNP) promoter driving expression of a luciferase reporter gene. PGE2 increased hBNP promoter activity 3.5-fold. An EP4 antagonist reduced the stimulatory effect of PGE2 but not an EP1 antagonist. Because EP4 signaling can involve adenylate cyclase, cAMP, and protein kinase A (PKA), we tested the effect of H-89, a PKA inhibitor, on PGE2 stimulation of the hBNP promoter. H-89 at 5 muM decreased PGE2 stimulation of BNP promoter activity by 100%. Because p42/44 MAPK mediates the effect of PGE2 on protein synthesis, we also examined the role of MAPKs in the regulation of BNP promoter activity. PGE2 stimulation of the hBNP promoter was inhibited by a MEK1/2 inhibitor and a dominant-negative mutant of Raf, indicating that p42/44 MAPK was involved. In contrast, neither a p38 MAPK inhibitor nor a JNK inhibitor reduced the stimulatory effect of PGE2. Involvement of small GTPases was also studied. Dominant-negative Rap inhibited PGE2 stimulation of the hBNP promoter, but dominant-negative Ras did not. We concluded that PGE2 stimulates the BNP promoter mainly via EP4, PKA, Rap, and p42/44 MAPK.  相似文献   

14.
Altered mechanical stress and strain in cardiac myocytes induce modifications in gene expression that affects cardiac remodeling and myocyte contractile function. To study the mechanisms of mechanotransduction in cardiomyocytes, probing alterations in mechanics and gene expression has been an effective strategy. However, previous studies are self-limited due to the general use of isolated neonatal rodent myocytes or intact animals. The main goal of this study was to develop a novel tissue culture chamber system for mouse myocardium that facilitates loading of cardiac tissue, while measuring tissue stress and deformation within a physiological environment. Intact mouse right ventricular papillary muscles were cultured in controlled conditions with superfusate at 95% O2/ 5% CO2, and 34°C, such that cell to extracellular matrix adhesions as well as cell to cell adhesions were undisturbed and both passive and active mechanical properties were maintained without significant changes. The system was able to measure the induction of hypertrophic markers (BNP, ANP) in tissue after 2 hrs and 5 hrs of stretch. ANP induction was highly correlated with the diastolic load of the muscle but not with developed systolic load. Load induced ANP expression was blunted in muscles from muscle-LIM protein knockout mice, in which defective mechanotransduction pathways have been predicted.  相似文献   

15.
Adult cardiac myocytes are terminally differentiated cells that are no longer able to divide. Accumulating data support the idea that apoptosis in these cells is involved in the transition from cardiac compensation to decompensated heart failure. Since a number of neurohormonal factors are activated in this state, these factors may be involved in the positive and negative regulation of apoptosis in cardiac myocytes. beta1-Adrenergic receptor and angiotensin type 1 receptor pathways, nitric oxide and natriuretic peptides are involved in the induction of apoptosis in these cells, while alpha1- and beta2-adrenergic receptor and endothelin-1 type A receptor pathways and gp130-related cytokines are antiapoptotic. The myocardial protection of the latter is mediated, at least in part, through mitogen-activated protein kinase-dependent pathways, compatible with the findings in other cell types. In contrast, signaling pathways leading to apoptosis in cardiac myocytes are distinct from those in other cell types. The cAMP/PKA pathway induces apoptosis in cardiac myocytes and blocks apoptosis in other cell types. The p300 protein, a coactivator of p53, mediates apoptosis in fibroblasts but appears to play a protective role in differentiated cardiac myocytes. The inhibition of myocardial cell apoptosis in heart failure may be achieved by directly blocking apoptosis signaling pathways or by modulating neurohormonal factors involved in their regulation. These may provide novel therapeutic strategies in some forms of heart failure.  相似文献   

16.
《Cellular signalling》2014,26(1):133-140
Diabetes causes a number of metabolic and physiological abnormalities in the retina. Many of the molecular and physiological abnormalities that develop during diabetic retinopathy are due to inflammation. Monocyte chemoattractant protein-1 (MCP-1) is an important factor involved in diabetic retinopathy. In a previous study, we found that cysteine-rich 61 (Cyr61), an important angiogenic factor, also plays an important role in diabetic retinopathy. In addition to the direct effects of Cyr61, we observed that Cyr61 can induce the expression of MCP-1. However, the mechanism through which this occurs is not completely understood in chorioretinal vascular endothelial cells. We therefore investigated the effects of Cyr61 on MCP-1 expression in this cell type. Cyr61 stimulated the expression of MCP-1 at the mRNA, protein, and secreted protein levels in a dose-dependent and time-dependent manner. Both total MCP-1 levels and secreted MCP-1 levels were attenuated during the response to Cyr61 stimulation by pretreatment with integrin ανβ3-blocking antibodies, a FAK inhibitor (PF573228), a PI3K inhibitor (LY294002), and an Akt inhibitor (A6730). Electrophoretic mobility shift assays revealed that the above inhibitors suppressed the activation of NF-κB. Additionally, deletion of the NF-κB-binding element in the MCP-1 gene promoter led to a decrease in expression in luciferase reporter assays. These results show that the induction of MCP-1 by Cyr61 is mediated through the activation of the integrin ανβ3, FAK, PI3K/Akt, and IKK/NF-κB pathways in chorioretinal vascular endothelial cells.  相似文献   

17.
Fluoroquinolones and propionic acid derivatives are widely used antibacterials and non-steroidal anti-inflammatory drugs, respectively, which have been reported to frequently trigger drug hypersensitivity reactions. Such reactions are induced by inflammatory mediators such as cytokines and chemokines. The present study investigated whether levofloxacin, a fluoroquinolone, and loxoprofen, a propionic acid derivative, have the potential to induce immune-related gene expression in dendritic cell-like cell lines such as HL-60, K562, and THP-1, and immortalized keratinocytes such as HaCaT. The expression of IL-8, MCP-1, and TNFα messenger RNA (mRNA) was found to increase following treatment with levofloxacin or loxoprofen in HL-60 cells. In addition, these drugs increased the mRNA content of annexin A1, a factor related to keratinocyte necroptosis in patients with severe cutaneous adverse reactions. Inhibition studies using specific inhibitors of mitogen-activated protein (MAP) kinases and NF-κB suggest that the extracellular signal-regulated kinase (ERK) pathway is the pathway principally involved in the induction of cytokines and annexin A1 by levofloxacin, whereas the involvement of MAP kinases and NF-κB in the loxoprofen-induced gene expression of these factors may be limited. Fluoroquinolones and propionic acid derivatives that are structurally related to levofloxacin and loxoprofen, respectively, were also found to induce immune-related gene expression in HL-60 cells. Collectively, these results suggest that fluoroquinolones and propionic acid derivatives have the potential to induce the expression of immune-related factors and that an in vitro cell-based assay system to detect the immune-stimulating potential of systemic drugs might be useful for assessing the risk of drug hypersensitivity reactions.  相似文献   

18.
Shen Y  Xu W  Chu YW  Wang Y  Liu QS  Xiong SD 《Journal of virology》2004,78(22):12548-12556
Coxsackievirus group B type 3 (CVB3) is an important cause of viral myocarditis. The infiltration of mononuclear cells into the myocardial tissue is one of the key events in viral myocarditis. Immediately after CVB3 infects the heart, the expression of chemokine(s) by infected myocardial cells may be the first trigger for inflammatory infiltration and immune response. However, it is unknown whether CVB3 can induce the chemokine expression in cardiac myocytes. Monocyte chemoattractant protein 1 (MCP-1) is a potent chemokine that stimulates the migration of mononuclear cells. The objective of the present study was to investigate the effect of CVB3 infection on MCP-1 expression in murine cardiac myocytes and the role of MCP-1 in migration of mononuclear cells in viral myocarditis. Our results showed that the expression of MCP-1 was significantly increased in cardiac myocytes after wild-type CVB3 infection in a time- and dose-dependent manner, which resulted in enhanced migration of mononuclear cells in mice with viral myocarditis. The migration of mononuclear cells was partially abolished by antibodies specific for MCP-1 in vivo and in vitro. Administration of anti-MCP-1 antibody prevented infiltration of mononuclear cells bearing the MCP-1 receptor CCR2 in mice with viral myocarditis. Infection by UV-irradiated CVB3 induced rapid and transient expression of MCP-1 in cardiac myocytes. In conclusion, our results indicate that CVB3 infection stimulates the expression of MCP-1 in myocardial cells, which subsequently leads to migration of mononuclear cells in viral myocarditis.  相似文献   

19.
The steroid hormone 1,25(OH)2-vitamin D3 [1,25D] has been shown to affect the growth and proliferation of primary cultures of ventricular myocytes isolated from neonatal rat hearts. The research presented here shows that the vitamin D receptor [VDR] is present in murine cardiac myocytes (HL-1 cells), and that 1,25D affects the growth, proliferation and morphology of these cells. In addition we show that 1,25D effects expression of ANP, myotrophin, and c-myc. Furthermore, 1,25D effects expression and localization of the VDR within the cell. Murine HL-1 cardiac myocytes were grown and treated with 1,25D in culture, and growth and morphology were assessed with microscopic analysis. Cells were counted and protein levels were evaluated through Western blot analysis. Subcellular localization of the VDR was determined using immunofluorescence and confocal microscopy. 1,25D was found to decrease proliferation and alter cellular morphology of the HL-1 cells. Treatment with 1,25D increased expression of myotrophin while decreasing expression of atrial natriuretic peptide [ANP] and c-myc. 1,25D treatment also increased expression and nuclear localization of the VDR in these cardiac myocytes. Thus 1,25D is an important hormone involved in modulating and maintaining heart cell structure and function.  相似文献   

20.
Macrophage accumulation has been implicated in the pathogenesis of inflammatory glomerular disease. Monocyte chemoattractant protein-1 (MCP-1) plays a central role in recruiting monocytes to the glomeruli. Tumor necrosis factor-α (TNF-α) has been shown to induce MCP-1 expression in mesangial cells, although the precise mechanisms remain unclear. We previously demonstrated that RhoA and its effector, Rho-kinase (Rho-associated coiled-coil containing protein kinase, ROCK), are involved in the pathogenesis of diabetic nephropathy. However, its role in MCP-1 induction by TNF-α has not been elucidated. In the present study, we investigated whether the Rho/Rho-kinase signaling pathway regulates the TNF-α-mediated induction of MCP-1 in mesangial cells. Exposure of mouse mesangial cells (MES-13) to TNF-α resulted in an increase of MCP-1 expression (by RT-PCR) and secretion into the medium (by ELISA). Pull down and Western blot analysis revealed that TNF-α activated RhoA and Rho-kinase. Based on these observations, we speculated that the Rho/Rho-kinase signaling pathway may be involved in MCP-1 induction by TNF-α. In agreement with this concept, Y-27632, a specific Rho-kinase inhibitor, attenuated TNF-α-mediated induction of MCP-1. We demonstrated that Y-27632 inhibited TNF-α-mediated monocyte migration and attenuated TNF-α-mediated p38 MAPK activation. Based on these data we infer that Y-27632 inhibits TNF-α-induced MCP-1 expression, secretion and function through inhibition of Rho-kinase and p38 MAPK activity. Our study suggests that Rho/Rho-kinase is an important therapeutic target of monocyte recruitment and accumulation within the glomerulus in inflammatory renal disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号