首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Germline mutations in mitochondrial DNA polymerase gamma (POLG1) induce mitochondrial DNA (mtDNA) mutations, depletion, and decrease oxidative phosphorylation. Earlier, we identified somatic mutations in POLG1 and the contribution of these mutations in human cancer. However, a role for germline variations in POLG1 in human cancers is unknown. In this study, we examined a role for disease associated germline variants of POLG1, POLG1 gene expression, copy number variation and regulation in human cancers. We analyzed the mutations, expression and copy number variation in POLG1 in several cancer databases and validated the analyses in primary breast tumors and breast cancer cell lines. We discovered 5-aza-2''-deoxycytidine led epigenetic regulation of POLG1, mtDNA-encoded genes and increased mitochondrial respiration. We conducted comprehensive race based bioinformatics analyses of POLG1 gene in more than 33,000 European-Americans and 5,000 African-Americans. We identified a mitochondrial disease causing missense variation in polymerase domain of POLG1 protein at amino acid 1143 (E1143G) to be 25 times more prevalent in European-Americans (allele frequency 0.03777) when compared to African-American (allele frequency 0.00151) population. We identified T251I and P587L missense variations in exonuclease and linker region of POLG1 also to be more prevalent in European-Americans. Expression of these variants increased glucose consumption, decreased ATP production and increased matrigel invasion. Interestingly, conditional expression of these variants revealed that matrigel invasion properties conferred by these germline variants were reversible suggesting a role of epigenetic regulators. Indeed, we identified a set of miRNA whose expression was reversible after variant expression was turned off. Together, our studies demonstrate altered genetic and epigenetic regulation of POLG1 in human cancers and suggest a role for POLG1 germline variants in promoting tumorigenic properties.  相似文献   

3.
BackgroundPLB is a natural naphthoquinone compound isolated from the roots of Plumbago indica plant. Our previous study reported the inhibitory effect of Plumbagin (PLB) on human endocrine resistant breast cancer cell growth and cell invasion.Hypothesis/PurposeSince PLB is a naphthoquinone compound, it can be reduced by the cytosolic NADPH: quinone oxidoreductase 1 (NQO1) enzyme. NQO1 expression is upregulated in various types of aggressive cancer including breast cancer. This study investigated the impact of NQO1 on anti-cancer effects of PLB in endocrine-resistant breast cancer cells.Study DesignThis study was an in vitro study using ER-positive cell line (MCF7) and endocrine-resistant cell lines (MCF7/LCC2 and MCF7/LCC9 cells).MethodsThe roles of NQO1 in anti-cancer activity of PLB were investigated by using NQO1 knockdown cells, NQO1 inhibitor and NQO1 overexpressed cells. To study the impact of NQO1 on the effects of PLB on cell viability, apoptosis, invasion and generation of ROS, the following assays were used: MTT assays, annexin V-PE/7-ADD staining flow cytometry, matrigel invasion assays and DCFHDA assays. To study the mechanism of how NQO1 mediated PLB effects in tamoxifen response and apoptosis, we assessed the levels of mRNA expression by using qRT-PCR.Results1. In this study, NQO1 was upregulated in endocrine-resistant cells.2. PLB did not change the expression of NQO1 but it was able to increase NQO1 activity.3. The inhibitory effects of PLB on cell proliferation, cell invasion and expression of tamoxifen resistant gene were attenuated in NQO1 knockdown cells or in the presence of NQO1 inhibitor.4. The effects of PLB to induce apoptosis and generate ROS were also decreased when NQO1 activity was inhibited or when the NQO1 expression was reduced.5. The anti-cancer effects of PLB increased when NQO1 was upregulated.ConclusionThe effects of PLB in endocrine-resistant breast cancer cells is dependent on NQO1’s activity.  相似文献   

4.
Despite the fact that mitochondrial dysfunction has an important role in tumorigenesis and metastasis, the underlying mechanism remains to be elucidated. Mitochondrial Complex I (NADH:ubiquinone oxidoreductase) is the first and the largest protein complex of the mitochondrial electron-transport chain (ETC),which has an essential role in maintaining mitochondrial function and integrity. In this study, we separately knocked down two subunits of mitochondrial complex I, GRIM-19 or NDUFS3, and investigated their effects on metastatic behaviors and explored the possible mechanisms. Our data showed that stable down-modulation of GRIM-19 or NDUFS3 decreased complex I activity and reactive oxygen species (ROS) production; led to enhanced cell adhesion, migration, invasion, and spheroid formation; and influenced the expressions of extracellular matrix (ECM) molecules and its related proteins. We also observed that the expressions of GRIM-19, NDUFS3, and ECM elements were correlated with invasive capabilities of breast cancer cell lines. These results suggest that inhibition of complex I affects metastatic properties of cancer cells, and mitochondrial ROS might play a crucial role in these processes by regulating ECM.  相似文献   

5.
Genomic characterization is beginning to define a molecular taxonomy for breast cancer; however, the molecular basis of invasion and metastasis remains poorly understood. We report a pivotal role for the fibroblast growth factor-inducible 14 (Fn14) receptor in this process. We examined whether Fn14 and its ligand tumor necrosis factor-like weak inducer of apoptosis (TWEAK) were expressed in breast tumors and whether deregulation of Fn14 levels affected malignant behavior of breast cancer cell lines. Analysis of TWEAK and Fn14 in publicly available gene expression data indicated that high Fn14 expression levels significantly correlated with several poor prognostic indicators (P < 0.05). Fn14 expression was highest in the HER2-positive/estrogen receptor-negative (HER2(+)/ER(-)) intrinsic subtype (P = 0.0008). An association between Fn14 and HER2 expression in breast tumors was confirmed by immunohistochemistry. Fn14 levels were elevated in invasive, ER(-) breast cancer cell lines. Overexpression of Fn14 in weakly invasive MCF7 and T47D cells resulted in a marked induction of invasion and activation of nuclear factor-kappaB (NF-kappaB) signaling. Ectopic expression of Fn14tCT, a Fn14 deletion mutant that cannot activate NF-kappaB signaling, was not able to induce invasion. Moreover, ectopic expression of Fn14tCT in highly invasive MDA-MB-231 cells reduced their invasive capability. RNA interference-mediated inhibition of Fn14 expression in both MDA-MB-231 and MDA-MB-436 cells reduced invasion. Expression profiling of the Fn14-depleted cells revealed deregulation of NF-kappaB activity. Our findings support a role for Fn14-mediated NF-kappaB pathway activation in breast tumor invasion and metastasis.  相似文献   

6.
7.
Lack of estrogen receptor (ER) and presence of vimentin (VIM) associate with poor prognosis in human breast cancer. We have explored the relationships between ER, VIM, and invasiveness in human breast cancer cell lines. In the matrigel outgrowth assay, ER+/VIM- (MCF-7, T47D, ZR-75-1), and ER-/VIM- (MDA-MB-468, SK-Br-3) cell lines were uninvasive, while ER-/VIM+ (BT549, MDA-MB-231, MDA-MB-435, MDA-MB-436, Hs578T) lines formed invasive, penetrating colonies. Similarly, ER-/VIM+ cell lines were significantly more invasive than either the ER+/VIM- or ER-/VIM- cell lines in the Boyden chamber chemoinvasion assay. Invasive activity in nude mice was only seen with ER-/VIM+ cell lines MDA-MB-231, MDA-MB-435 and MDA-MB-436. Hs578T cells (ER-/VIM+) showed hematogenous dissemination to the lungs in one of five mice, but lacked local invasion. The ER-/VIM+ MCF-7ADR subline was significantly more active than the MCF-7 cells in vitro, but resembled the wild-type MCF-7 parent in in vivo activity. Data from these cell lines suggest that human breast cancer progression results first in the loss of ER, and subsequently in VIM acquisition, the latter being associated with increased metastatic potential through enhanced invasiveness. The MCF-7ADR data provide evidence that this transition can occur in human breast cancer cells. Vimentin expression may provide useful insights into mechanisms of invasion and/or breast cancer cell progression.  相似文献   

8.
目的研究泛素羧基末端水解酶L1(UCH-L1)与磷酸化p38(p-p38)在乳腺癌组织、细胞系中的表达情况、两种蛋白的表达与临床病理特征的关系以及UCH-L1与乳腺癌侵袭转移的关系。方法用免疫组织化学方法检测乳腺癌组织中UCH-L1与p-p38蛋白的表达情况,用Western Blot方法检测乳腺癌组织以及细胞系中UCH-L1与p-p38蛋白的表达情况。应用UCH-L1特异性抑制剂作用于乳腺癌高侵袭高转移细胞系MDA-MB-435s后,用Western Blot观察UCH-L1与p-p38蛋白表达改变的情况,用Transwell实验检测MDA-MB-435s细胞侵袭潜能的改变。结果 UCH-L1和p-p38蛋白在乳腺浸润性导管癌中的表达高于其在癌旁正常乳腺组织中的表达(P=0.012,P=0.001),二者呈正相关(r=0.397,P=0.000),并与乳腺癌的TNM分期(P=0.017,P=0.010)、淋巴结转移情况(P=0.033,P=0.021)相关。乳腺上皮细胞系MCF-10A、乳腺癌低侵袭低转移细胞系MCF-7和乳腺癌高侵袭高转移细胞系MDA-MB-435s中两种蛋白表达水平呈递增趋势(P均<0.05)。UCH-L1特异性抑制剂可以浓度依赖性地下调MDA-MB-435s细胞系中p-p38蛋白的表达水平(P均<0.05),并能抑制乳腺癌细胞的侵袭转移潜能。结论 UCH-L1、p-p38过表达与乳腺癌的TMN分期、淋巴结转移有关。UCH-L1可能通过上调p-p38介导乳腺癌转移。  相似文献   

9.
Tan JX  Wang XY  Su XL  Li HY  Shi Y  Wang L  Ren GS 《PloS one》2011,6(7):e22836
Hyaluronic acid (HA) is a component of the Extra-cellular matrix (ECM), it is closely correlated with tumor cell growth, proliferation, metastasis and angiogenesis, etc. Hyaluronidase (HAase) is a HA-degrading endoglycosidase, levels of HAase are elevated in many cancers. Hyaluronidase-1 (HYAL1) is the major tumor-derived HAase. We previously demonstrated that HYAL1 were overexpression in human breast cancer. Breast cancer cells with higher HAase expression, exhibited significantly higher invasion ability through matrigel than those cells with lower HAase expression, and knockdown of HYAL1 expression in breast cancer cells resulted in decreased cell growth, adhesion, invasion and angiogenesis. Here, to further elucidate the function of HYAL1 in breast cancer, we investigated the consequences of forcing HYAL1 expression in breast cancer cells by transfection of expression plasmid. Compared with control, HYAL1 up-regulated cells showed increased the HAase activity, and reduced the expression of HA in vitro. Meantime, upregulation of HYAL1 promoted the cell growth, migration, invasion and angiogenesis in vitro. Moreover, in nude mice model, forcing HYAL1 expression induced breast cancer cell xenograft tumor growth and angiogenesis. Interestingly, the HA expression was upregulated by forcing HYAL1 expression in vivo. These findings suggested that HYAL1-HA system is correlated with the malignant behavior of breast cancer.  相似文献   

10.
Benzyl isothiocyanate (BITC), a dietary cancer chemopreventive agent, causes apoptosis in MDA-MB-231 and MCF-7 human breast cancer cells, but the mechanism of cell death is not fully understood. We now demonstrate that the BITC-induced apoptosis in human breast cancer cells is initiated by reactive oxygen species (ROS) due to inhibition of complex III of the mitochondrial respiratory chain. The BITC-induced ROS production and apoptosis were significantly inhibited by overexpression of catalase and Cu,Zn-superoxide dismutase and pharmacological inhibition of the mitochondrial respiratory chain. The mitochondrial DNA-deficient Rho-0 variant of MDA-MB-231 cells was nearly completely resistant to BITC-mediated ROS generation and apoptosis. The Rho-0 MDA-MB-231 cells also resisted BITC-mediated mitochondrial translocation (activation) of Bax. Biochemical assays revealed inhibition of complex III activity in BITC-treated MDA-MB-231 cells as early as at 1 h of treatment. The BITC treatment caused activation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), which function upstream of Bax activation in apoptotic response to various stimuli. Pharmacological inhibition of both JNK and p38 MAPK conferred partial yet significant protection against BITC-induced apoptosis. Activation of JNK and p38 MAPK resulting from BITC exposure was abolished by overexpression of catalase. The BITC-mediated conformational change of Bax was markedly suppressed by ectopic expression of catalytically inactive mutant of JNK kinase 2 (JNKK2(AA)). Interestingly, a normal human mammary epithelial cell line was resistant to BITC-mediated ROS generation, JNK/p38 MAPK activation, and apoptosis. In conclusion, the present study indicates that the BITC-induced apoptosis in human breast cancer cells is initiated by mitochondria-derived ROS.  相似文献   

11.
The activities'of the lysosomal cysteine proteinases cathepsin B and L are regulated by their endogenous inhibitors, stefins A and B, and cystatin C, and their imbalance may be associated with increased invasiveness and development of the malignant cell phenotype. The aim of this study was to investigate mRNA, protein and activity levels of the above proteins in relation to in vitro invasiveness and to the reported in vivo tumorigenicity of four human breast tumor cell lines: the spontaneously immortalized cell line MCF10A, its c-Ha-ras transfectant MCF10AT, and two tumorigenic derivative cell lines, MCF10AT-Ca1a and MCF10AT-Ca1d. Invasiveness did not correlate with tumorigenicity, since the MCF10AT cell was the most invasive and the remaining three were at about half of its level. Cathepsin B expression paralleled the in vitro invasiveness through matrigel at all levels of expression, but cathepsin L did not. Stefin levels were elevated several-fold in the tumorigenic cell lines, but not in MCF10AT. The hypothesis that cathepsin B plays an active role in the invasion of breast cancer cell lines was confirmed by the fact that synthetic cysteine proteinase inhibitors, particularly those selective for cathepsin B, significantly reduced the invasion of the MCF10AT cells.  相似文献   

12.
To investigate the biologic relevance and clinical implication of genes involved in multiple gene expression signatures for breast cancer prognosis, we identified 16 published gene expression signatures, and selected two genes, MAD2L1 and BUB1. These genes appeared in 5 signatures and were involved in cell-cycle regulation. We analyzed the expression of these genes in relation to tumor features and disease outcomes. In vitro experiments were also performed in two breast cancer cell lines, MDA-MB-231 and MDA-MB-468, to assess cell proliferation, migration and invasion after knocking down the expression of these genes. High expression of these genes was found to be associated with aggressive tumors and poor disease-free survival of 203 breast cancer patients in our study, and the association with survival was confirmed in an online database consisting of 914 patients. In vitro experiments demonstrated that lowering the expression of these genes by siRNAs reduced tumor cell growth and inhibited cell migration and invasion. Our investigation suggests that MAD2L1 and BUB1 may play important roles in breast cancer progression, and measuring the expression of these genes may assist the prediction of breast cancer prognosis.  相似文献   

13.
TH Hsieh  CF Tsai  CY Hsu  PL Kuo  E Hsi  JL Suen  CH Hung  JN Lee  CY Chai  SC Wang  EM Tsai 《PloS one》2012,7(8):e42750
Environmental hormones play important roles in regulating the expression of genes involved in cell proliferation, drug resistance, and breast cancer risk; however, their precise role in human breast cancer cells during cancer progression remains unclear. To elucidate the effect of the most widely used industrial phthalate, n-butyl benzyl phthalate (BBP), on cancer progression, we evaluated the results of BBP treatment using a whole human genome cDNA microarray and MetaCore software and selected candidate genes whose expression was changed by more than ten-fold by BBP compared with controls to analyze the signaling pathways in human breast cancer initiating cells (R2d). A total of 473 genes were upregulated, and 468 were downregulated. Most of these genes are involved in proliferation, epithelial-mesenchymal transition, and angiogenesis signaling. BBP induced the viability, invasion and migration, and tube formation in vitro, and Matrigel plug angiogenesis in vivo of R2d and MCF-7. Furthermore, the viability and invasion and migration of these cell lines following BBP treatment was reduced by transfection with a small interfering RNA targeting the mRNA for lymphoid enhancer-binding factor 1; notably, the altered expression of this gene consistently differentiated tumors expressing genes involved in proliferation, epithelial-mesenchymal transition, and angiogenesis. These findings contribute to our understanding of the molecular impact of the environmental hormone BBP and suggest possible strategies for preventing and treating human breast cancer.  相似文献   

14.
Little is known about the biological functions of the phospholipase A2 receptor (PLA2R1) except that it has the ability to bind a few secreted phospholipases A2 (sPLA2′s). We have previously shown that PLA2R1 regulates senescence in normal human cells. In this study, we investigated the ability of PLA2R1 to control cancer cell growth. Analysis of expression in cancer cells indicates a marked PLA2R1 decrease in breast cancer cell lines compared to normal or nontransformed human mammary epithelial cells. Accordingly, PLA2R1 ectopic expression in PLA2R1-negative breast cancer cell lines led to apoptosis, whereas a prosenescence response was predominantly triggered in normal cells. PLA2R1 structure–function studies and the use of chemical inhibitors of sPLA2-related signaling pathways suggest that the effect of PLA2R1 is sPLA2-independent. Functional experiments demonstrate that PLA2R1 regulation of cell death is driven by a reactive oxygen species (ROS)-dependent mechanism. While screening for ROS-producing complexes involved in PLA2R1 biological responses, we identified a critical role for the mitochondrial electron transport chain in PLA2R1-induced ROS production and cell death. Taken together, this set of data provides evidence for an important role of PLA2R1 in controlling cancer cell death by influencing mitochondrial biology.  相似文献   

15.
16.
Human claudin-1 is an integral protein component of tight junctions, a structure controlling cell-to-cell adhesion and, consequently, regulating paracellular and transcellular transport of solutes across human epithelia and endothelia. Recently, a claudin-1 (CLDN1) cDNA has been isolated from human mammary epithelial cells (HMECs). CLDN1 expression in HMECs, in contrast to low or undetectable levels of expression in a number of breast tumors and breast cancer cell lines, points to CLDN1 as a possible tumor-suppressor gene. In order to evaluate the CLDN-1 gene in sporadic and hereditary breast cancer, we have characterized its genomic organization and have screened the four coding exons for somatic mutations in 96 sporadic breast carcinomas and for germline mutations in 93 breast cancer patients with a strong family history of breast cancer. In addition, we have compared the 5'-upstream sequences of the human and murine CLDN1 genes to identify putative promoter sequences and have examined both the promoter and coding regions of the human gene in the breast cancer cell lines showing decreased CLDN1 expression. In the sporadic tumors and hereditary breast cancer patients, we have found no evidence to support the involvement of aberrant CLDN1 in breast tumorigenesis. Likewise, in the breast cancer cell lines, no genetic alterations in the promoter or coding sequences have been identified that would explain the loss of CLDN1 expression. Other regulatory or epigenetic factors may be involved in the down-regulation of this gene during breast cancer development.  相似文献   

17.
18.
Basal-like breast cancer is a molecularly distinct subtype of breast cancer that is highly aggressive and has a poor prognosis. MicroRNA-29c (miR-29c) has been shown to be significantly down-regulated in basal-like breast tumors and to be involved in cell invasion and sensitivity to chemotherapy. However, little is known about the genetic and regulatory factors contributing to the altered expression of miR-29c in basal-like breast cancer. We here report that epigenetic modifications at the miR-29c promoter, rather than copy number variation of the gene, may drive the lower expression of miR-29c in basal-like breast cancer. Bisulfite sequencing of CpG sites in the miR-29c promoter region showed higher methylation in basal-like breast cancer cell lines compared to luminal subtype cells with a significant inverse correlation between expression and methylation of miR-29c. Analysis of primary breast tumors using The Cancer Genome Atlas (TCGA) dataset confirmed significantly higher levels of methylation of the promoter in basal-like breast tumors compared to all other subtypes. Furthermore, inhibition of CpG methylation with 5-aza-CdR increases miR-29c expression in basal-like breast cancer cells. Flourescent In Situ Hybridization (FISH) revealed chromosomal abnormalities at miR-29c loci in breast cancer cell lines, but with no correlation between copy number variation and expression of miR-29c. Our data demonstrated that dysregulation of miR-29c in basal-like breast cancer cells may be in part driven by methylation at CpG sites. Epigenetic control of the miR-29c promoter by epigenetic modifiers may provide a potential therapeutic target to overcome the aggressive behavior of these cancers.  相似文献   

19.
Triple-negative breast cancer is difficult to treat because of the lack of rationale-based therapies. There are no established markers and targets that can be used for stratification of patients and targeted therapy. Here we report the identification of novel molecular features, which appear to augment metastasis of triple negative breast tumors. We found that triple-negative breast tumors can be segregated into 2 phenotypes based on their genome-wide protein abundance profiles. The first is characterized by high expression of Stat1, Mx1, and CD74. Seven out of 9 tumors from this group had invaded at least 2 lymph nodes while only 1 out of 10 tumors in group 2 was lymph node positive. In vitro experiments showed that the interferon-induced increase in Stat1 abundance correlates with increased migration and invasion in cultured cells. When CD74 was overexpressed, it increased cell adhesion on matrigel. This effect was accompanied with a marked increase in the membrane expression of beta-catenin, MUC18, plexins, integrins, and other proteins involved in cell adhesion and cancer metastasis. Taken together, our results show that Stat1/CD74 positive triple-negative tumors are more aggressive and suggest an approach for development of better diagnostics and more targeted therapies for triple negative breast cancer. This article is part of a Special Issue entitled: Proteomics: The clinical link.  相似文献   

20.
p21(Waf1/Cip1/Sdi1) is a cyclin-dependent kinase inhibitor that mediates cell cycle arrest. Prolonged p21 up-regulation induces a senescent phenotype in normal and cancer cells, accompanied by an increase in intracellular reactive oxygen species (ROS). However, it has been shown recently that p21 expression can also lead to cell death in certain models. The mechanisms involved in this process are not fully understood. Here, we describe an induction of apoptosis by p21 in sarcoma cell lines that is p53-independent and can be ameliorated with antioxidants. Similar levels of p21 and ROS caused senescence in the absence of significant death in other cancer cell lines, suggesting a cell-specific response. We also found that cells undergoing p21-dependent cell death had higher sensitivity to oxidants and a specific pattern of mitochondrial polarization changes. Consistent with this, apoptosis could be blocked with targeted expression of catalase in the mitochondria of these cells. We propose that the balance between cancer cell death and arrest after p21 up-regulation depends on the specific effects of p21-induced ROS on the mitochondria. This suggests that selective up-regulation of p21 in cancer cells could be a successful therapeutic intervention for sarcomas and tumors with lower resistance to mitochondrial oxidative damage, regardless of p53 status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号