首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In vitro stem cell systems traditionally employ oxygen levels that are far removed from the in vivo situation. This study investigates whether an ambient environment containing a physiological oxygen level of 3% (normoxia) enables the generation of neural precursor cells (NPCs) from human embryonic stem cells (hESCs) and whether the resultant NPCs can undergo regional specification and functional maturation. We report robust and efficient neural conversion at 3% O(2), demonstration of tri-lineage potential of resultant NPCs and the subsequent electrophysiological maturation of neurons. We also show that NPCs derived under 3% O(2) can be differentiated long term in the absence of neurotrophins and can be readily specified into both spinal motor neurons and midbrain dopaminergic neurons. Finally, modelling the oxygen stress that occurs during transplantation, we demonstrate that in vitro transfer of NPCs from a 20 to 3% O(2) environment results in significant cell death, while maintenance in 3% O(2) is protective. Together these findings support 3% O(2) as a physiologically relevant system to study stem cell-derived neuronal differentiation and function as well as to model neuronal injury.  相似文献   

3.
We report the generation of functional dopaminergic neurons from human embryonic stem cells (hESCs) using a growth factor mediated multistep EB protocol and its therapeutic effects in vivo. Embryoid bodies (EBs) were cultured in insulin-transferrin-selenium fibronectin (ITSFn) media for the selection of neural precursor cells (NPC). The selected cells on exposure to N2 media supplemented with EGF, bFGF initially aggregated to generate spontaneous free floating neurospheres and on exposure to signaling molecules Shh and FGF-8 differentiated into dopaminergic neurons (40% TH+ cells/total neurons). The differentiated NPC expressed dopaminergic specific markers both at cellular and molecular levels. They secreted detectable levels of dopamine into the culture supernatant. The most unique feature of our protocol is the generation of free floating neurospheres which can be expanded for a longer period without losing their capability to differentiate into DA neurons. Further, transplantation of NPCs into the substantia nigra of 6-OHDA lesioned rat model of Parkinson’s disease elicited significant reversal of lesion induced motor deficits which was sustained upto the end of 1 year long study period. Immunohistochemical studies of the grafted area one year post transplantation revealed that transplanted hESC derived neural precursor cells survived, integrated in vivo and differentiated into dopaminergic neurons without teratoma formation.In summary, our results encourage the potential use of hESC derived dopaminergic neurons for future clinical application in Parkinson’s disease.  相似文献   

4.
5.
Neural Precursor Cells (NPCs) generate complex stereotypic arrays of neuronal subtypes in the brain. This process involves the integration of patterning cues that progressively restrict the fate of specific NPCs. Yet the capacity of NPCs to interpret foreign microenvironments during development remains poorly defined. The aim of this work was to test the competence of mouse telencephalic NPCs to respond to the dopaminergic niche of the mesencephalon. Telencephalic NPCs isolated from midgestation mouse embryos (E10.5) and transplanted to age-matched mesencephalic explants efficiently differentiated into neurons but were largely unable to produce midbrain dopaminergic (mDA) neurons. Instead, E10.5 telencephalic NPCs behaved as restricted gabaergic progenitors that maintained ectopic expression of Foxg1 and Pax6. In contrast, E8.5 telencephalic NPCs were able to differentiate into Lmx1a+/Foxa2+/TH+ neurons in the dopaminergic niche of the mesencephalic explants. In addition, these early telencephalic NPCs showed region-dependent expression of Nkx6.1, Nkx2.2 and site-specific differentiation into gabaergic neurons within the mesencephalic tissue. Significant dopaminergic differentiation of E8.5 telencephalic NPCs was not observed after transplantation to E12.5 mesencephalic explants, suggesting that inductive signals in the dopaminergic niche rapidly decay after midgestation. Moreover, we employed transplantation of embryonic stem cells-derived precursors to demonstrate that extinction of inductive signals within the telencephalon lags behind the commitment of residing NPCs. Our data indicate that the plasticity to interpret multiple instructive niches is an early and ephemeral feature of the telencephalic neural lineage.  相似文献   

6.
7.
Parkinson's disease (PD) is a neurodegenerative disorder characterised by the loss of substantia nigra dopaminergic neurons that leads to a reduction in striatal dopamine (DA) levels. Replacing lost cells by transplanting dopaminergic neurons has potential value to repair the damaged brain. Salidroside (SD), a phenylpropanoid glycoside isolated from plant Rhodiola rosea, is neuroprotective. We examined whether salidroside can induce mesenchymal stem cells (MSCs) to differentiate into neuron‐like cells, and convert MSCs into dopamine neurons that can be applied in clinical use. Salidroside induced rMSCs to adopt a neuronal morphology, upregulated the expression of neuronal marker molecules, such as gamma neuronal enolase 2 (Eno2/NSE), microtubule‐associated protein 2 (Map2), and beta 3 class III tubulin (Tubb3/β‐tubulin III). It also increased expression of brain‐derived neurotrophic factor (BDNF), neurotrophin‐3 (NT‐3) and nerve growth factor (NGF) mRNAs, and promoted the secretion of these growth factors. The expression of dopamine neurons markers, such as dopamine‐beta‐hydroxy (DBH), dopa decarboxylase (DDC) and tyrosine hydroxylase (TH), was significantly upregulated after treatment with salidroside for 1–12 days. DA steadily increased after treatment with salidroside for 1–6 days. Thus salidroside can induce rMSCs to differentiate into dopaminergic neurons.  相似文献   

8.
9.
GDNF plays an important role in the survival and differentiation of primary dopaminergic neurons, but it requires multiple factors for its entire range of activities. This study investigated the effects of GDNF and its cofactors on the development of bFGF-responsive neural progenitor cells (NPCs), mesencephalic and cortical progenitor cells (MP and CP). Various factors were found to have significant inductive effects on the survival and maintenance of these cells in late developmental stages. MP had greater potential than CP to differentiate into dopaminergic neurons. Treatment of NPCs with GDNF and its cofactors enhanced MAP-2 and TH expression, particularly the latter. These findings suggest that NPCs, particularly MP, could develop into more specific neurons if the appropriate factors were applied during the final cell fate specification. They might thus become beneficial sources of donor cells in the treatment of neurological disorders.  相似文献   

10.
We have previously shown that transplantation of immature DCX+/NeuN+/Prox1+ neurons (found in the neonatal DG), but not undifferentiated neuronal progenitor cells (NPCs) from ventral subventricular zone (SVZ), results in neuronal maturation in vivo within the dentate niche. Here we investigated whether we could enhance the integration of SVZ NPCs by forced expression of the proneural gene Neurogenin 2 (NEUROG2). NPCs cultured from neonatal GFP-transgenic rat SVZ for 7 days in a non-differentiating medium were transduced with a retrovirus encoding NEUROG2 and DsRed or the DsRed reporter gene alone (control). By 3 days post-transduction, the NEUROG2-transduced cells maintained in culture contained mostly immature neurons (91% DCX+; 76% NeuN+), whereas the control virus-transduced cells remained largely undifferentiated (30% DCX+; <1% NeuN+). At 6 weeks following transplantation into the DG of adult male rats, there were no neurons among the transplanted cells treated with the control virus but the majority of the NEUROG2-transduced DsRed+ SVZ cells became mature neurons (92% NeuN+; DCX-negative). Although the NEUROG2-transduced SVZ cells did not express the dentate granule neuron marker Prox1, most of the NEUROG2-transduced SVZ cells (78%) expressed the glutamatergic marker Tbr1, suggesting the acquisition of a glutamatergic phenotype. Moreover, some neurons extended dendrites into the molecular layer, grew axons containing Ankyrin G+ axonal initial segments, and projected into the CA3 region, thus resembling mature DG granule neurons. A proportion of NEUROG2 transduced cells also expressed c-Fos and P-CREB, two markers of neuronal activation. We conclude that NEUROG2-transduction is sufficient to promote neuronal maturation and integration of transplanted NPCs from SVZ into the DG.  相似文献   

11.
12.
The availability of human neuronal progenitors (hNPs) in high purity would greatly facilitate neuronal drug discovery and developmental studies, as well as cell replacement strategies for neurodegenerative diseases and conditions, such as spinal cord injury, stroke, Parkinson's disease, Alzheimer's disease, and Huntington's disease. Here we describe for the first time a method for producing hNPs in large quantity and high purity from human embryonic stem cells (hESCs) in feeder-free conditions, without the use of exogenous noggin, sonic hedgehog or analogs, rendering the process clinically compliant. The resulting population displays characteristic neuronal-specific markers. When allowed to spontaneously differentiate into neuronal subtypes in vitro, cholinergic, serotonergic, dopaminergic and/or noradrenergic, and medium spiny striatal neurons were observed. When transplanted into the injured spinal cord the hNPs survived, integrated into host tissue, and matured into a variety of neuronal subtypes. Our method of deriving neuronal progenitors from hESCs renders the process amenable to therapeutic and commercial use.  相似文献   

13.
In vitro neural differentiation of human embryonic stem cells (hESCs) is an advantageous system for studying early neural development. The process of early neural differentiation in hESCs begins by initiation of primitive neuroectoderm, which is manifested by rosette formation, with consecutive differentiation into neural progenitors and early glial-like cells. In this study, we examined the involvement of early neural markers – OTX2, PAX6, Sox1, Nestin, NR2F1, NR2F2, and IRX2 – in the onset of rosette formation, during spontaneous neural differentiation of hESC and human induced pluripotent stem cell (hiPSC) colonies. This is in contrast to the conventional way of studying rosette formation, which involves induction of neuronal differentiation and the utilization of embryoid bodies. Here we show that OTX2 is highly expressed at the onset of rosette formation, when rosettes comprise no more than 3–5 cells, and that its expression precedes that of established markers of early neuronal differentiation. Importantly, the rise of OTX2 expression in these cells coincides with the down-regulation of the pluripotency marker OCT4. Lastly, we show that cells derived from rosettes that emerge during spontaneous differentiation of hESCs or hiPSCs are capable of differentiating into dopaminergic neurons in vitro, and into mature-appearing pyramidal and serotonergic neurons weeks after being injected into the motor cortex of NOD-SCID mice.  相似文献   

14.

Background

Human embryonic stem cells (hESCs) may provide an invaluable resource for regenerative medicine. To move hESCs towards the clinic it is important that cells with therapeutic potential be reproducibly generated under completely defined conditions.

Methodology/Principal Findings

Here we report a four-step scalable process that is readily transferable to a Good Manufacture Practice (GMP) facility for the production of functional dopaminergic neurons from hESCs for potential clinical uses. We show that each of the steps (propagation of ESC→generation of neural stem cells (NSC)→induction of dopaminergic precursors→maturation of dopaminergic neurons) could utilize xeno-free defined media and substrate, and that cells could be stored at intermediate stages in the process without losing their functional ability. Neurons generated by this process expressed midbrain and A9 dopaminergic markers and could be transplanted at an appropriate time point in development to survive after transplant.

Conclusions/Significance

hESCs and NSCs can be maintained in xeno-free defined media for a prolonged period of time while retaining their ability to differentiate into authentic dopaminergic neurons. Our defined medium system provides a path to a scalable GMP-applicable process of generation of dopaminergic neurons from hESCs for therapeutic applications, and a ready source of large numbers of neurons for potential screening applications.  相似文献   

15.
Proteomic analysis of neural differentiation of mouse embryonic stem cells   总被引:4,自引:0,他引:4  
Wang D  Gao L 《Proteomics》2005,5(17):4414-4426
Mouse embryonic stem cells (mESCs) can differentiate into different types of cells, and serve as a good model system to study human embryonic stem cells (hESCs). We showed that mESCs differentiated into two types of neurons with different time courses. To determine the global protein expression changes after neural differentiation, we employed a proteomic strategy to analyze the differences between the proteomes of ES cells (E14) and neurons. Using 2-DE plus LC/MS/MS, we have generated proteome reference maps of E14 cells and derived dopaminergic neurons. Around 23 proteins with an increase or decrease in expression or phosphorylation after differentiation have been identified. We confirmed the downregulation of translationally controlled tumor protein (TCTP) and upregulation of alpha-tubulin by Western blotting. We also showed that TCTP was further downregulated in derived motor neurons than in dopaminergic neurons, and its expression level was independent of extracellular Ca(2+) concentration during neural differentiation. Potential roles of TCTP in modulating neural differentiation through binding to Ca(2+), tubulin and Na,K-ATPase, as well as the functional significance of regulation of other proteins such as actin-related protein 3 (Arp3) and Ran GTPase are discussed. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.  相似文献   

16.
Parkinson disease (PD) is a multi-factorial neurodegenerative disorder with loss of dopaminergic neurons in the substantia nigra and characteristic intracellular inclusions, called Lewy bodies. Genetic predisposition, such as point mutations and copy number variants of the SNCA gene locus can cause very similar PD-like neurodegeneration. The impact of altered α-synuclein protein expression on integrity and developmental potential of neuronal stem cells is largely unexplored, but may have wide ranging implications for PD manifestation and disease progression. Here, we investigated if induced pluripotent stem cell-derived neuronal precursor cells (NPCs) from a patient with Parkinson’s disease carrying a genomic triplication of the SNCA gene (SNCA-Tri). Our goal was to determine if these cells these neuronal precursor cells already display pathological changes and impaired cellular function that would likely predispose them when differentiated to neurodegeneration. To achieve this aim, we assessed viability and cellular physiology in human SNCA-Tri NPCs both under normal and environmentally stressed conditions to model in vitro gene-environment interactions which may play a role in the initiation and progression of PD. Human SNCA-Tri NPCs displayed overall normal cellular and mitochondrial morphology, but showed substantial changes in growth, viability, cellular energy metabolism and stress resistance especially when challenged by starvation or toxicant challenge. Knockdown of α-synuclein in the SNCA-Tri NPCs by stably expressed short hairpin RNA (shRNA) resulted in reversal of the observed phenotypic changes. These data show for the first time that genetic alterations such as the SNCA gene triplication set the stage for decreased developmental fitness, accelerated aging, and increased neuronal cell loss. The observation of this “stem cell pathology” could have a great impact on both quality and quantity of neuronal networks and could provide a powerful new tool for development of neuroprotective strategies for PD.  相似文献   

17.
18.
The postnatal neocortex has traditionally been considered a non-neurogenic region, under non-pathological conditions. A few studies suggest, however, that a small subpopulation of neural cells born during postnatal life can differentiate into neurons that take up residence within the neocortex, implying that postnatal neurogenesis could occur in this region, albeit at a low level. Evidence to support this hypothesis remains controversial while the source of putative neural progenitors responsible for generating new neurons in the postnatal neocortex is unknown. Here we report the identification of self-renewing multipotent neural progenitor cells (NPCs) derived from the postnatal day 14 (PD14) marmoset monkey primary visual cortex (V1, striate cortex). While neuronal maturation within V1 is well advanced by PD14, we observed cells throughout this region that co-expressed Sox2 and Ki67, defining a population of resident proliferating progenitor cells. When cultured at low density in the presence of epidermal growth factor (EGF) and/or fibroblast growth factor 2 (FGF-2), dissociated V1 tissue gave rise to multipotent neurospheres that exhibited the ability to differentiate into neurons, oligodendrocytes and astrocytes. While the capacity to generate neurones and oligodendrocytes was not observed beyond the third passage, astrocyte-restricted neurospheres could be maintained for up to 6 passages. This study provides the first direct evidence for the existence of multipotent NPCs within the postnatal neocortex of the nonhuman primate. The potential contribution of neocortical NPCs to neural repair following injury raises exciting new possibilities for the field of regenerative medicine.  相似文献   

19.
通过人胚胎干细胞(human embryonic stem cells,hESC)体外分化方法和畸胎瘤形成可以分化获得多种成体细胞.但目前尚不清楚是否可以从hESCs畸胎瘤中分离某些特异性细胞.通过体外筛选方法,有效地从hESCs畸胎瘤中分离出神经前体细胞(neural progenitor cells,NPCs)和间充质干细胞(mesenchymal stem cells,MSCs).这种hESCs畸胎瘤来源的NPCs和MSCs与体内神经前体细胞和间充质干细胞有着相似的分子标记和特性,并具有进一步的分化潜能——分别可以诱导成为神经元、神经胶质细胞、脂肪细胞和骨骼细胞等.根据人胚胎干细胞畸胎瘤中含有不同分化阶段的外胚层、中胚层和内胚层的组织或细胞,认为人胚胎干细胞畸胎瘤可以作为另一个细胞来源以获取多种(包括人胚胎干细胞体外分化难以得到的)各种前体/干细胞和终末分化细胞.  相似文献   

20.
Traditionally, undifferentiated human embryonic stem cells (hESCs) are maintained on mouse embryonic fibroblast (MEF) cells or on matrigel with an MEF-conditioned medium (CM), which hampers the clinical applications of hESCs due to the contamination by animal pathogens. Here we report a novel chemical-defined medium using DMEM/F12 supplemented with N2, B27, and basic fibroblast growth factor (bFGF) [termed NBF]. This medium can support prolonged self-renewal of hESCs. hESCs cultured in NBF maintain an undifferentiated state and normal karyotype, are able to form embryoid bodies in vitro, and differentiate into three germ layers and extraembryonic cells. Furthermore, we find that hESCs cultured in NBF possess a low apoptosis rate and a high proliferation rate compared with those cultured in MEF-CM. Our findings provide a novel, simplified chemical-defined culture medium suitable for further therapeutic applications and developmental studies of hESCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号