首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Parasitic castration, the specific blocking of host reproductive output by an individual parasite, is a host-parasite interaction common to many invertebrates, particularly crustaceans, echinoderms and molluscs. It can reduce host density, alter host population dynamics and the evolution of host life history traits. Here we show that parasitisation by a single female cymothoid isopod, Anilocra apogonae, castrates its vertebrate host, the five-lined cardinalfish, Cheilodipterus quinquelineatus. Parasitised male fish fail to mouthbrood their young. The gonads of parasitised fish are smaller and parasitised female fish have substantially fewer and smaller ova than do the gonads of unparasitised fish. As for parasitic castrators of invertebrate hosts, A. apogonae on C. quinquelineatus are uniformly dispersed amongst infested hosts (one adult female isopod per host), are site specific, and their body size is highly correlated with that of their host. These isopods are large relative to the body size of their hosts, averaging 3.8% of the weight of the host. Parasitised fish also weigh less and are shorter than unparasitised fish of the same age. Despite the presence of other potential hosts, A. apogonae only infests C. quinquelineatus. The consistency of the ecological correlates amongst known parasitic castrators suggests that the parasitic castrator host-parasite relationship will be recognised for other parasites of vertebrates.  相似文献   

2.
The study of the cymothoid isopod parasites on marine fishes from Tunisian localities has allowed us to distinguish eight species, seven of which have already been recorded and one, Mothocya epimerica which is new to the region. New hosts for Cerathotoa parallela and Nerocila orbignyi are reported. For each parasite species collected, the host fish, the parasitic specificity and the parasitological index are given.  相似文献   

3.
In most aquatic ecosystems, fishes are hosts to parasites and, sometimes, these parasites can affect fish biology. Some of the most dramatic cases occur when fishes are intermediate hosts for larval parasites. For example, fishes in southern California estuaries are host to many parasites. The most common of these parasites, Euhaplorchis californiensis, infects the brain of the killifish Fundulus parvipinnis and alters its behaviour, making the fish 10–30 times more susceptible to predation by the birds that serve as its definitive host. Parasites like E. californiensis are embedded in food webs because they require trophic transmission. In the Carpinteria Salt Marsh estuarine food web, parasites dominate the links and comprise substantial amount of biomass. Adding parasites to food webs alters important network statistics such as connectance and nestedness. Furthermore, some free‐living stages of parasites are food items for free‐living species. For instance, fishes feed on trematode cercariae. Being embedded in food webs makes parasites sensitive to changes in the environment. In particular, fishing and environmental disturbance, by reducing fish populations, may reduce parasite populations. Indirect evidence suggests a decrease in parasites in commercially fished species over the past three decades. In addition, environmental degradation can affect fish parasites. For these reasons, parasites in fishes may serve as indicators of environmental impacts.  相似文献   

4.
Poulin R  Leung TL 《Oecologia》2011,166(3):731-738
Within food webs, trophically transmitted helminth parasites use predator–prey links for their own transfer from intermediate prey hosts, in which they occur as larval or juvenile stages, to predatory definitive hosts, in which they reach maturity. In large taxa that can be used as intermediate and/or definitive hosts, such as fish, a host species’ position within a trophic network should determine whether its parasite fauna consists mostly of adult or larval helminths, since vulnerability to predation determines an animal’s role in predator–prey links. Using a large database on the helminth parasites of 303 fish species, we tested whether the proportion of parasite species in a host that occur as larval or juvenile stages is best explained by their trophic level or by their body size. Independent of fish phylogeny or habitat, only fish body length emerged as a significant predictor of the proportion of parasites in a host that occur as larval stages from our multivariate analyses. On average, the proportion of larval helminth taxa in fish shorter than 20 cm was twice as high as that for fish over 100 cm in length. This is consistent with the prediction that small fishes, being more vulnerable to predation, make better hosts for larval parasites. However, trophic level and body length are strongly correlated among fish species, and they may have separate though confounded effects on the parasite fauna exploiting a given species. Helminths show varying levels of host specificity toward their intermediate host when the latter is the downstream host involved in trophic transmission toward an upstream definitive host. Given this broad physiological compatibility of many helminths with fish hosts, our results indicate that fish body length, as a proxy for vulnerability to predators, is a better predictor of their use by helminth larvae than their trophic level based on diet content.  相似文献   

5.
1. Freshwater mussels are critically endangered in North America, making it important to understand their environmental requirements at all life stages. As glochidia (larvae), they attach to fish hosts where they undergo substantial mortality, making this transition important in their life cycle. Larval host fish requirements have typically been described using data from laboratory infestations to determine suitable hosts. 2. Laboratory infestations circumvent many natural barriers that prevent infestation of physiologically compatible fishes by mussel larvae. While such methods are invaluable for identifying ‘physiological hosts,’ they cannot fully describe realised ‘ecological hosts’ in the field. 3. We studied Popenaias popeii in the Black River in New Mexico, because it is of conservation concern and it is the only mussel species present, facilitating identification of glochidial infestation. To explore the difference between physiological hosts and ecological hosts, we conducted a 3‐year field study of fishes infested by P. popeii glochidia. 4. Substantially fewer fish species were infested by P. popeii in the wild (10 of 20 observed) than had been identified as physiological hosts in laboratory trials (24 of 31). We combined data on fish abundance, proportion of fish hosts infested (prevalence) and the number of glochidia per fish (intensity) and identified three fish species that probably contributed substantially more to mussel recruitment by carrying more glochidia than other host species. 5. Similarities in behaviour among these fishes allowed us to hypothesise routes of infestation, such as benthos‐feeding by catostomids, that allow glochidia to infest these hosts at higher rates than other suitable hosts. Overall, this approach provides a method of quantifying the relative importance of different species of host fish in the mussel lifecycle.  相似文献   

6.
《Biotropica》2017,49(2):229-238
Estimates of biodiversity and its global patterns are affected by parasite richness and specificity. Despite this, parasite communities are largely neglected in biodiversity estimates, especially in the tropics. We studied the parasites of annual killifish of the genus Nothobranchius that inhabit annually desiccating pools across the African savannah and survive the dry period as developmentally arrested embryos. Their discontinuous, non‐overlapping generations make them a unique organism in which to study natural parasite fauna. We investigated the relationship between global (climate and altitude) and local (pool size, vegetation, host density and diversity, and diversity of potential intermediate hosts) environmental factors and the community structure of killifish parasites. We examined metazoan parasites from 21 populations of four host species (Nothobranchius orthonotus, N. furzeri, N. kadleci, and N. pienaari) across a gradient of aridity in Mozambique. Seventeen parasite taxa were recorded, with trematode larval stages (metacercariae) being the most abundant taxa. The parasites recorded were both allogenic (life cycle includes non‐aquatic host; predominantly trematodes) and autogenic (cycling only in aquatic hosts; nematodes). The parasite abundance was highest in climatic regions with intermediate aridity, while parasite diversity was associated with local environmental characteristics and positively correlated with fish species diversity and the amount of aquatic vegetation. Our results suggest that parasite communities of sympatric Nothobranchius species are similar and dominated by the larval stages of generalist parasites. Therefore, Nothobranchius serve as important intermediate or paratenic hosts of parasites, with piscivorous birds and predatory fish being their most likely definitive hosts.  相似文献   

7.
Reproduction of tropical species beyond their geographic range associated with ocean warming is regarded as the key indicator of a range shift. However, the lack of historical breeding records poses challenges for detecting distinct range shifts of tropical fishes. To obtain baseline data of the current status of the occurrence and breeding activity of tropical pomacentrid and apogonid fishes in ocean warming hotspots of temperate reefs (Kochi and Wakayama, 33°N) of Japan, we conducted a two-year underwater visual survey and synthesized those data with recently published information. By combining data from the present as well as past studies, the results confirmed the occurrence of 52 pomacentrid and 34 apogonid species, whereas breeding activity was confirmed for 19 and 16 species, respectively. Species richness and abundance of recruitment periphery and breeding active species were high at the warmer site adjacent to the Kuroshio Current. Most observed species were found beyond their known geographic range. Some species showing active breeding were widespread tropical fishes (e.g., Amphiprion clarkii, Pomacentrus coelestis and Apogon notatus) and probably have established breeding populations irrespective of recent global warming. The winter sea water temperature around the study sites will continue to rise, increasing by >2 °C by the end of the century; therefore, our results are highly relevant and represent the first step to elucidate the potential range extension of tropical fishes into temperate reefs with climate change.  相似文献   

8.
We describe the intermediate and definitive hosts of the fish nematodes Rhabdochona coronacauda and R. denudata honshuensis and discuss the relationships between parasitism and the feeding habitats of their intermediate hosts. We found that the principal intermediate hosts of the two nematodes were filter-feeding mayflies of the genera Ephemera, Photamanthus and Isonychia. Ephemera strigata seemed to be the most important intermediate host of these nematodes. Adult R. coronacauda were found mainly in Hemibarbus longirostris and Rhinogobius flumineus, which are benthic fishes that feed on benthic aquatic insects, including E. strigata. For R. coronacauda, therefore, the feeding habits of the definitive hosts facilitate host alternation by this species. However, adult R. denudata honshuensis were found in cyprinids. In particular, Zacco temmincki was the principal natural definitive host in our study area. Since Z. temmincki is a swimming predator, E. strigata nymphs that burrow in the substrate are not the main prey of this species. This indicates that the transmission of R. denudata honshuensis hardly occurs from E. strigata nymph to Z. temmincki, suggesting another, unknown transmission route.  相似文献   

9.
We review how trophically transmitted helminths adapt to the special problems associated with successive hosts in complex cycles. In intermediate hosts, larvae typically show growth arrest at larval maturity (GALM). Theoretical models indicate that optimization of size at GALM requires larval mortality rate to increase with time between infection and GALM: low larval growth or paratenicity (no growth) arises from unfavourable growth and mortality rates in the intermediate host and low transmission rates to the definitive host. Reverse conditions favour high GALM size or continuous growth. Some support is found for these predictions. Intermediate host manipulation involves predation suppression (which decreases host vulnerability before the larva can establish in its next host) and predation enhancement (which increases host vulnerability after the larva can establish in its next host). Switches between suppression and enhancement suggest adaptive manipulation. Manipulation conflicts can occur between larvae of different ages/species a host individual. Larvae must usually develop to GALM before becoming infective to the next host, possibly due to trade‐offs, e.g. between growth/survival in the present host and infection ability for the next host. In definitive hosts, if mortality rate is constant, optimal growth before switching to reproduction is set by the growth/morality rate ratio. Rarely, no growth occurs in definitive hosts, predicted (with empirical support) when larval size on infection exceeds growth/mortality rate. Tissue migration patterns and residence sites may be explained by variations in growth/mortality rates between host gut and soma, migration costs and benefits of releasing eggs in the gut.  相似文献   

10.
Taenia arctos n. sp. (Cestoda: Cyclophyllidea: Taeniidae) is described from the brown bear Ursus arctos Linnaeus (definitive host) and moose/elk Alces spp. (intermediate hosts) from Finland (type-locality) and Alaska, USA. The independent status of the new species and the conspecificity of its adults and metacestodes have been recently confirmed by the mtDNA sequence data of Lavikainen et al. (2011; Parasitology International, 60, 289–295). Special reference is given to morphological differences between the new species and T. krabbei Moniez, 1879 (definitive hosts primarily canines for the latter), both of which use the moose/elk (Alces spp.) as intermediate hosts (the latter also uses Rangifer and perhaps other northern ruminants), and between the new species and T. ursina Linstow, 1893, both of which use the brown bear U. arctos as a definitive host. New morphological data are also provided for adults and cysticerci of T. krabbei. The analysis includes potentially useful morphometric features that have not been previously applied to Taenia spp.  相似文献   

11.
Wang Z  Wang X  Liu X 《EcoHealth》2008,5(2):115-126
Cystic echinococcosis (CE) and alveolar echinococcosis (AE) are highly significant infectious diseases occurring worldwide and caused by metacestodes of tapeworms Echinococcus granulosus and E. multilocularis, respectively. Both human CE and AE have highest prevalence rates in western and northwestern China. Livestock is the main intermediate host of E. granulosus, and wild small mammal are the main intermediate hosts of E. multilocularis. Since they range freely in pastoral areas, prey on wild small mammals and offal of livestock after slaughter, and have close relationships with humans, domestic dogs are the most important definitive host of both Echinococcus spp. with the highest risk of transmitting CE and AE to humans. Pastoralism is the occupation with the highest risk of being infected with the both kinds of echinococcosis due to the proximity of livestock, dogs, and wildlife host species. In this review, we summarize the epidemiology of human echinococcosis, the situation of parasite transmission in animal hosts, and possible transmission patterns in China. In addition, human activities and their potential influence on the transmission of echinococcosis are also discussed.  相似文献   

12.
The similarity in species composition between two communities generally decays as a function of increasing distance between them. Parasite communities in vertebrate definitive hosts follow this pattern but the respective relationship in intermediate invertebrate hosts of parasites with complex life cycles is unknown. In intermediate hosts, parasite communities are affected not only by the varying vagility of their definitive hosts (dispersing infective propagules) but also by the necessary coincidence of all their hosts in environmentally suitable localities. As intermediate hosts often hardly move they do not contribute to parasite dispersal. Hence, their parasite assemblages may decrease faster in similarity with increasing distance than those in highly mobile vertebrate definitive hosts. We use published field survey data to investigate distance decay of similarity in trematode communities from three prominent coastal molluscs of the Eastern North-Atlantic: the gastropods Littorina littorea and Hydrobia ulvae, and the bivalve Cerastoderma edule. We found that the similarity of trematode communities in all three hosts decayed with distance, independently of local sampling effort, and whether or not the parasites used the mollusc as first or second intermediate host in their life cycle. In H. ulvae, the halving distance (i.e. the distance that halves the similarity from its initial similarity at 1 km distance) for the trematode species using birds as definitive hosts was approximately two to three times larger than for species using fish. The initial similarities (estimated at 1 km distance) among trematode communities were relatively higher, whereas mean halving distances were lower, compared to published values for parasite communities in vertebrate hosts. We conclude that the vagility of definitive hosts accounts for a high similarity at the local scale, while the strong decay of similarity across regions is a consequence of the low probability that all necessary hosts and suitable environmental conditions coincide on a large scale.  相似文献   

13.
Freshwater mussels of the order Unionoida have life cycles that include larval attachment to and later metamorphosis on suitable host fishes. Information on the trophic relationship between unionoid larvae and their host fishes is scarce. We investigated the trophic interaction between fish hosts and encysted larvae of two species of freshwater mussels, Margaritifera margaritifera and Unio crassus, using stable isotope analyses of larvae and juvenile mussels as well as of host fish gill and muscle tissues before and after infestation. Due to different life histories and durations of host‐encystment, mass and size increase in M. margaritifera during the host‐dependent phase were greater than those of U. crassus. δ13C and δ15N signatures of juvenile mussels approached isotopic signatures of fish tissues, indicating a parasitic relationship between mussels and their hosts. Shifts were more pronounced for M. margaritifera, which had a five‐fold longer host‐dependent phase than U. crassus. The results of this study suggest that stable isotope analyses are a valuable tool for characterizing trophic relationships and life history strategies in host–parasite systems. In the case of unionoid mussels, stable isotopic shifts of the larvae are indicative of the nutritional versus phoretic importance of the host.  相似文献   

14.
The importance and prevalence of phylogenetic tracking between hosts and dependent organisms caused by co‐evolution and shifting between closely related host species have been debated for decades. Most studies of phylogenetic tracking among phytophagous insects and their host plants have been limited to insects feeding on a narrow range of host species. However, narrow host ranges can confound phylogenetic tracking (phylogenetic tracking hypothesis) with host shifting between hosts of intermediate relationship (intermediate hypothesis). Here, we investigated the evolutionary history of the Enchenopa binotata complex of treehoppers. Each species in this complex has high host fidelity, but the entire complex uses hosts across eight plant orders. The phylogenies of E. binotata were reconstructed to evaluate whether (1) tracking host phylogeny; or (2) shifting between intermediately related host plants better explains the evolutionary history of E. binotata. Our results suggest that E. binotata primarily shifted between both distant and intermediate host plants regardless of host phylogeny and less frequently tracked the phylogeny of their hosts. These findings indicate that phytophagous insects with high host fidelity, such as E. binotata, are capable of adaptation not only to closely related host plants but also to novel hosts, likely with diverse phenology and defense mechanisms.  相似文献   

15.
This paper reviews the occurrence of cymothoid isopod parasitism in aquaculture, reports the first case of infection by a cymothoid isopod (Ceratothoa oestroides) in Turkish aquaculture, and analyses its effects on sea bass Dicentrarchus labrax. Analyses revealed that C. oestroides negatively affects the weights and lengths of sea bass hosts. These effects have been previously underestimated because host age has not been accounted for. The analysis of condition factors as a means of assessing parasite effects is therefore likely to be misleading. Infection of fish of all ages by all cymothoid stages indicates that sea bass are not intermediate hosts but that C. oestroides has effected a complete host shift.  相似文献   

16.
Lake Liambezi forms the periodic connection between the upper Zambezi, Kwando and Okavango rivers. A full parasitological assessment was conducted on 86 fish, representing 14 species in six families sampled in August 2011. Parasite diversity was low and dominated by species with complex life cycles involving intermediate hosts. Most prevalent were larval nematodes (Contracaecum sp.) infecting 12 and Trypanasoma sp. infecting nine of the 14 host species. The intra-erythrocytic parasite Babesiosoma mariae was found in the blood of Coptodon rendalli and Oreochromis andersonii with prevalence of 50% and 60%, respectively. The host-specific monogenean Annulotrema hepseti was recorded only from H. cuvieri with a prevalence of 100%. Notable absences were the copepod and branchiuran parasites that have direct lifecycles and usually occur in high prevalence and abundance in the region. Because parasites with direct life cycles can only be transported into the lake on the host fish, their absence suggests limited immigration of infected fishes into the lake. This suggests that internal recruitment dominates over immigration in the fish population dynamics in Lake Liambezi.  相似文献   

17.
The distribution, specificity and pathogenicity of the acanthocephalan Pomphorhynchus laevis (Müller) were studied in the River Avon, Hampshire. The parasite occurred in every fish species, but three categories of hosts could be distinguished. Using growth and maturation as criteria of specificity, only chub Leuciscus cephalus (L.) and barbel Barbus barbus (L.) were recognized as its preferred hosts. Parasites occasionally matured in trout Salmo trutta (L.) and dace Leuciscus leuciscus (L.), but none grew or matured in other host species. Changes in the abundance of P. laevis along the river were related to changes in the abundance of both the intermediate host, Gammarus pulex , and the preferred hosts, and its occurrence in fish to the importance of G. pulex in their diet. In the upper reaches of the River Avon and in other localities populations could be maintained at a low level by parasites maturing in trout, and presence and abundance at any site depended upon the presence and abundance of both intermediate and definitive hosts especially and upon the dietary preferences of the latter. The absence of P. laevis from many parts of Britain is nevertheless still inexplicable. The parasite caused local damage to the intestinal wall of fish, the extent of which varied from species to species, but did not affect host growth rate or cause direct mortality and P. laevis cannot be regarded as an important pathogen in the River Avon or any other British River.  相似文献   

18.
Species of Eimeria occurring in fishes show important differences, especially in their life cycles, with respect to what is known for those forms found in mammals or other hosts. In some cases, at least, some small invertebrate may play the role of vector or intermediate host. Present studies of fish coccidia may throw light on the possible evolution of certain aspects of host-parasite interrelationships involving eimerian species in particular: for example, the earliest site (perhaps not the gut) of infection and even the “original” host group (perhaps invertebrates rather than vertebrates).  相似文献   

19.
Bhaibulaya M., Indra-Ngarm S. and Ananthapruti M. 1979. Freshwater fishes of Thailand as experimental intermediate hosts for Capillaria philippinensis. The International Journal for Parasitology9: 105–108. Nine species of freshwater fishes from Thailand have been exposed to infection with embryonated eggs of Capillaria philippinensis. The eggs were fed to fishes with food or through a polyethylene tube. After 10–30 days larvae capable of establishing intestinal capillariasis in Mongolian gerbils were recovered from six fish species: Cyprinus carpio, Puntius gonionotus, Aplocheilus panchax, Gambusia holbrookii, Rasbora borapelensis, and Trichopsis vittatus. Larvae were not recovered from Tilapia nilotica, Osteochilus hasseltii and Trichogaster trichopterus. Five human cases of intestinal capillariasis have been reported from widely scattered areas of Thailand and the natural intermediate and definitive hosts remain to be determined.  相似文献   

20.
Synopsis The seasonal transmission ofRaphidascaris acus was studied in two small lakes on Manitoulin Island, Ontario. Dragonfly nymphs and caddisfly larvae, acting as paratenic hosts, contained second-stage larvae. Several fishes, including percids and cyprinids, were intermediate hosts with second, third, and fourth-stage larvae in the liver. Yellow perch,Perca flavescens, was the most important of these. Intensities were up to 928 and increased with length and age of the perch; prevalence was 100%. Abundance ofR. acus tended to be higher in females but was not related to condition of the perch. Second-stage larvae were acquired from invertebrates in summer and developed to the fourth stage by November. They became surrounded by fibrous capsules during the next summer but remained alive for at least another year. The longevity of larvae in the intermediate host may ensure survival of the parasite through periods of low host abundance after winterkill. Northern pike,Esox lucius, was the definitive host. Abundance ofR. acus tended to be greater in larger pike but was not related to sex or condition of the fish. The parasite was acquired in late fall. Prevalence was 100% and mean intensities were over 200 in winter and spring, declining to 64–100% and less than 15, respectively, in summer. Mature worms were present from early spring through summer. Seasonality of infection in the definitive host is not attributable to seasonal availability of larvae in perch. Instead it may be controlled by timing of predation on perch and rate of development and longevity of the parasite. Transmission to pike apparently continues in summer. Low intensity may result from low recruitment rate and rapid turnover of the parasite population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号