首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Quantitative immunoelectron microscopy of gold label in intracellular compartments often involves calculating labelling densities (LDs). These are related to antigen concentrations and usually refer gold particle counts to the sizes of compartments on sections (for example, golds per microm(2) of organelle profile area or per microm of membrane trace length). Here, we show how LD values can be estimated more simply (without estimating areas or lengths) and also how observed and expected LD values can be used to calculate a relative labelling index (RLI) for each compartment and then test statistically for preferential (non-random) labelling. For random labelling, RLI=1. Compartment size is estimated stereologically by superimposing random test points (which hit organelle profiles in proportion to their area) or test lines (which intersect membrane traces in proportion to their length). By this means, the observed LD of a compartment (LD(obs)) can be expressed simply as golds per test point (organelles) or per intersection (membranes). Furthermore, the LD obtained by dividing total golds (on all compartments) by total points or intersections (on all compartments) is the value to be expected (LD(exp)) when compartments label randomly. For each compartment, RLI=LD(obs)/LD(exp). Statistical analysis is undertaken by comparing observed distributions of golds with predicted random distributions (calculated from point or intersection counts). A compartment is preferentially labelled if two criteria are met: (1) its RLI>1 (i.e. LD(obs) is greater than LD(exp)) and (2) its partial chi-squared value makes a substantial contribution to total chi-squared value. This approach provides a simple and efficient way of comparing LDs in different compartments. Its utility is illustrated using data from VPARP and LAMP-1 labelling experiments.  相似文献   

2.
A review is presented of recently developed methods for quantifying electron microscopical thin sections on which colloidal gold-labelled markers are used to identify and localize interesting molecules. These efficient methods rely on sound principles of random sampling, event counting, and statistical evaluation. Distributions of immunogold particles across cellular compartments can be compared within and between experimental groups. They can also be used to test for co-localization in multilabelling studies involving two or more sizes of gold particle. To test for preferential labelling of compartments, observed and expected gold particle distributions are compared by χ(2) analysis. Efficient estimators of gold labelling intensity [labelling density (LD) and/or relative labelling index (RLI)] are used to analyse volume-occupying compartments (e.g. Golgi vesicles) and/or surface-occupying compartments (e.g. cell membranes). Compartment size is estimated by counting chance events after randomly superimposing test lattices of points and/or line probes. RLI=1 when there is random labelling and RLI >1 when there is preferential labelling. Between-group comparisons do not require information about compartment size but, instead, raw gold particle counts in different groups are compared by combining χ(2) and contingency table analyses. These tests may also be used to assess co-distribution of different sized gold particles in compartments. Testing for co-labelling involves identifying sets of compartmental profiles that are unlabelled and labelled for one or both of two gold marker sizes. Numbers of profiles in each labelling set are compared by contingency table analysis and χ(2) analysis or Fisher's exact probability test. The various methods are illustrated with worked examples based on empirical and synthetic data and will be of practical benefit to those applying single or multiple immunogold labelling in their research.  相似文献   

3.
In quantitative immunoelectron microscopy, subcellular compartments that are preferentially labelled with colloidal gold particles can be identified by estimating labelling densities (LDs) and relative labelling indices (RLIs). Hitherto, this approach has been limited to compartments which are either surface occupying (membranes) or volume occupying (organelles) but not a mixture of both (membranes and organelles). However, some antigens are known to translocate between membrane and organelle compartments and the problem then arises of expressing gold particle LDs in a consistent manner (e.g., as number per compartment profile area). Here, we present one possible solution to tackle this problem. With this method, each membrane is treated as a volume-occupying compartment and this is achieved by creating an acceptance zone at a fixed distance on each side of membrane images. Gold signal intensity is then expressed as an LD within the membrane profile area so created and this LD can be compared to LDs found in volume-occupying compartments. Acceptance zone width is determined largely by the expected dispersion of gold labelling. In some cases, the zone can be applied to all visible membrane images but there is a potential problem when image loss occurs due to the fact that membranes are not cut orthogonal to their surface but are tilted within the section. The solution presented here is to select a subset of clear images representing orthogonally sectioned membranes (so-called local vertical windows, LVWs). The fraction of membrane images forming LVWs can be estimated in two ways: goniometrically (by determining the angle at which images become unclear) or stereologically (by counting intersections with test lines). The fraction obtained by either method can then be used to calculate a factor correcting for membrane image loss. In turn, this factor is used to estimate the total gold labelling associated with the acceptance zone of the entire (volume-occupying) membrane. However calculated, the LDs over the chosen (membrane and organelle) compartments are used to obtain observed and expected gold particle counts. The observed distribution is determined simply by counting gold particles associated with each compartment. Next, an expected distribution is created by randomly superimposing test points and counting those hitting each compartment. LDs of the chosen compartments are used to calculate RLI and chi-squared values and these serve to identify those compartments in which there is preferential labelling. The methods are illustrated by synthetic and real data.  相似文献   

4.
Quantitative immunoelectron microscopy often involves determining the distributions of gold label in different intracellular compartments and then drawing comparisons between compartments in the same sample of cells or between experimental groups of cells. In the case of within-group comparisons, recent developments in the estimation of relative labelling index and labelling density make it possible to test whether or not particular compartments are preferentially labelled. These methods are ideally suited to analysing gold label restricted to volume (organelle) or surface (membrane) compartments but may be modified to analyse label localised in mixtures of both. Here, a simple and efficient approach to drawing between-group comparisons for label associated with organelles and/or membranes is presented. The method relies on multistage random sampling of specimens (via blocks and microscopic fields) followed by simply counting gold particles associated with different compartments. The distributions of raw gold counts in different groups are then compared by contingency table analysis with statistical degrees of freedom for chi-squared values being determined by the number of compartments and the number of experimental groups of cells. Compartmental chi-squared values making substantial contributions to the total chi-squared values then identify where the main between-group differences reside. The method requires no information about compartment size (for example, organelle profile area or membrane trace length) and does not even depend critically on standardising between-group magnification. Its application is illustrated using datasets from immunolabelling studies designed to localise the KDEL receptor, phosphatidyl-inositol 4,5-bisphosphate, GLUT4 and rab4 at the electron microscopic level.  相似文献   

5.
Various methods for quantifying cellular immunogold labelling on transmission electron microscope thin sections are currently available. All rely on sound random sampling principles and are applicable to single immunolabelling across compartments within a given cell type or between different experimental groups of cells. Although methods are also available to test for colocalization in double/triple immunogold labelling studies, so far, these have relied on making multiple measurements of gold particle densities in defined areas or of inter-particle nearest neighbour distances. Here, we present alternative two-step approaches to codistribution and colocalization assessment that merely require raw counts of gold particles in distinct cellular compartments. For assessing codistribution over aggregate compartments, initial statistical evaluation involves combining contingency table and chi-squared analyses to provide predicted gold particle distributions. The observed and predicted distributions allow testing of the appropriate null hypothesis, namely, that there is no difference in the distribution patterns of proteins labelled by different sizes of gold particle. In short, the null hypothesis is that of colocalization. The approach for assessing colabelling recognises that, on thin sections, a compartment is made up of a set of sectional images (profiles) of cognate structures. The approach involves identifying two groups of compartmental profiles that are unlabelled and labelled for one gold marker size. The proportions in each group that are also labelled for the second gold marker size are then compared. Statistical analysis now uses a 2 × 2 contingency table combined with the Fisher exact probability test. Having identified double labelling, the profiles can be analysed further in order to identify characteristic features that might account for the double labelling. In each case, the approach is illustrated using synthetic and/or experimental datasets and can be refined to correct observed labelling patterns to specific labelling patterns. These simple and efficient approaches should be of more immediate utility to those interested in codistribution and colocalization in multiple immunogold labelling investigations.  相似文献   

6.
Ultrastructural identification of subcellular morphologically inconspicuous compartments is based on detection of specific molecules or by a presence of specific functions. Such compartments are detected using antibodies with attached label, usually gold particles. However, the gold particles have a point pattern, while a compartment is a coherent area. In addition, some background labeling is always present that complicates identification of the labeled compartments. The aim of this study was therefore to develop a stereological method that would enable us to define cellular compartments based on delineating the borders of gold particle clusters, and to test the practical use of the method using biological experimental data. New computer program plug-ins were developed to facilitate the practical use of the stereological method. The kernel estimation method was successfully tested by detection of ribosomal rRNA over morphologically recognizable nucleoli. In a next step, we successfully detected individual chromosomal domains-nuclear compartments that cannot be distinguished in cell nuclei morphologically. The results show that the new stereological/image analysis method is well able to discriminate cellular compartments based on density of immunogold particles. The plug-ins were made available to scientific community at http://nucleus.biomed.cas.cz/gold.  相似文献   

7.
In immunoelectron microscopy (immuno-EM) on ultrathin sections, gold particles are used for localization of molecular components of cells. These particles are countable, and quantitative methods have been established to estimate and evaluate the density and distribution of “raw” gold particle counts from a single uncontrolled labeling experiment. However, these raw counts are composed of two distinct elements: particles that are specific (specific labeling) and particles that are not (nonspecific labeling) for the target component. So far, approaches for assessment of specific labeling and for correction of raw gold particle counts to reveal specific labeling densities and distributions have not attracted much attention. Here, we discuss experimental strategies for determining specificity in immuno-EM, and we present methods for quantitative assessment of (1) the probability that an observed gold particle is specific for the target, (2) the density of specific labeling, and (3) the distribution of specific labeling over a series of compartments. These methods should be of general utility for researchers investigating the distribution of cellular components using on-section immunogold labeling. (J Histochem Cytochem 58:917–927, 2010)  相似文献   

8.
Summary A new method is reported for the preparation of colloidal gold particles with diameters ranging between 5 and 12 nm. The initial gold particle population, with an average diameter of 5.6±0.9 nm, is prepared by reduction of chloroauric acid with white phosphorous. An increase in particle diameter by growth is obtained by reduction of chloroauric acid with white phosphorous in the presence of colloidal gold particles. The labelling efficiency of these gold particles, conjugated with protein A, in indirect immunolabelling experiments is investigated by labelling of -galactosidase on ultrathin cryosections of Escherichia coli cells. We demonstrate that the labelling efficiency is at least dependent on particle diameter, probe concentration and preparation method. In addition it is shown, that with this new method, gold particle populations can be prepared with minor overlap in diameter spreading. Therefore these gold probes are suitable for qualitative double labelling experiments. The quantitative aspect of immunolabelling is discussed.  相似文献   

9.
Particulate gold labeling on ultrathin sections is in widespread use for antigen localization at the EM level. To extend the usefulness of gold labeling technology, we are evaluating different methods for sampling and estimating quantities of gold labeling. Here we present a simple, rapid, and unbiased method for assessing the relative pool sizes of immunogold labeling distributed over different cell compartments. The method uses a sampling approach developed for stereology in which a regular array of microscopic fields or linear scans is positioned randomly on labeled sections. From these readouts, gold particles are counted and assigned to identifiable cell structures to construct a gold labeling frequency distribution of those labeled compartments. Here we use ultrathin cryosections labeled for a range of different proteins and for a signaling lipid. We show by scanning labeled sections at the electron microscope that counting 100-200 particles on each of two grids is sufficient to obtain a reproducible and rapid assessment of the pattern of labeling proportions over 10-16 compartments. If more precise estimates of labeling proportions over individual compartments are required (e.g., to achieve coefficients of error of 10-20%), then 100-200 particles need to be counted over each compartment of interest.  相似文献   

10.
Summary Recombinant protein G (RPG) was conjugated to colloidal gold particles and used for immunocytochemistry. In this report, the preparation of RPG—gold conjugates (RPGG) and the application of these conjugates in spot blot tests and in double immunolabelling are described. The immunolabelling was performed on ultracryosections of pig small intestine using antibodies directed against aminopeptidase N and sucrase—isomaltase. The labelling efficiency of RPGG was compared to that of protein A—gold conjugates (PAG) in different compartments of the enterocyte. Quantification showed that the labelling intensity was dependent on the size of the marker as well as on the kind of protein used for complex formation. The distributions for RPGG and PAG were respectively: for the 12nm particles, 10.3 and 6.2 particles/µm of length of microvillar membrane, 3.5 and 1.0 particles/µm2 of Golgi profile and 5.9 and 2.0 particles/µm2 of multivesicular body profile; and for the 6nm particles, 49.6 and 15.7 particles/µm of length of microvillar membrane, 24.4 and 5.0 particles/µm2 of Golgi profile and 25.4 and 3.4. particles/µm2 of multivesicular body profile. Controls showed very little non-specific gold labelling (<0.02 gold particles/µm2 of section).  相似文献   

11.
U Dürer  H Franke  R Dargel  J Ude 《Histochemistry》1986,84(3):263-270
We used the protein-A gold technique to demonstrate the presence of apolipoprotein-B in ultrathin sections of fetal rat liver tissue. It was possible to show for the first time that the electron-dense, osmiophilic particles with diameters of 20-40 nm located within the RER cisternae and Golgi complexes of fetal rat hepatocytes contain apolipoprotein-B components and therefore are lipoproteins. After specific labelling an accumulation of gold label was observed on the RER cisternae, Golgi cisternae and the Golgi-associated secretory vesicles of hepatocytes. The specificity of this labelling pattern was assessed by comparison with cytochemical controls. Our qualitative findings were confirmed by a quantitative analysis of the mean labelling intensity (mean number of gold particles per square micron of the surface area of a particular cellular compartment) on the RER, Golgi complexes, mitochondria, nuclei and the remaining cytoplasm of hepatocytes. It is concluded that the hepatocytes of fetal rats are capable of forming apolipoprotein-B-containing lipoprotein particles. With respect to the size-distribution pattern of the observed intra-hepatic lipoprotein particles, we suggest that the hepatocytes of fetal rats produce lipoproteins of the low- and very low-density-lipoprotein type.  相似文献   

12.
Particulate gold labeling applied to ultrathin sections is a powerful approach for locating cellular proteins and lipids on thin sections of cellular structures and compartments. Effective quantitative methods now allow estimation of both density and distribution of gold labeling across aggregate organelles or compartment profiles. However, current methods generally use random sections of cells and tissues, and these do not readily present the information needed for spatial mapping of cellular quantities of gold label. Yet spatial mapping of gold particle labeling becomes important when cells are polarized or show internal organization or spatial shifts in protein/lipid localization. Here we have applied a stereological approach called the rotator to estimate cellular gold label and proportions of labeling over cellular compartments at specific locations related to a chosen cell axis or chosen cellular structures. This method could be used in cell biology for mapping cell components in studies of protein translocation, cell polarity, cell cycle stages, or component cell types in tissues. (J Histochem Cytochem 57:709–719, 2009)  相似文献   

13.
Summary The preparation of a protein A-gold complex (pAg3) using 3 nm gold particles and its application for labelling of intracellular antigens on thin sections is reported. The 3 nm gold particle is the smallest metal particle currently available for cytochemistry and permits a higher resolution of the pAg technique. Furthermore, it can be used in double labelling experiments in conjunction with a pAg complex prepared from 15 nm gold particles. For double labelling, the pAg3 complex must be used for staining of the first antigen since otherwise a non-specific co-labelling of the two pAg complexes results.  相似文献   

14.
In order to investigate at ultrastructural level the mechanism of DNA synthesis progression during the different moments of S-phase a bromodeoxyuridine-anti bromodeoxyuridine (BrdU-anti BrdU) method has been applied to synchronized 3T3 fibroblasts. After 30 min BrdU incorporation, five different labelling patterns can be identified and should be related to early, middle and late S-phase. These patterns are represented mainly by diffuse labelling localized in different nuclear domains and by quite rare cases in which the labelling is limited to isolated clusters of gold particles. After a 5-min pulse with BrdU it is possible to observe isolated clusters of gold particles at each moment of S-phase, which, however, exhibit the same distribution of the five principal labelling patterns observed after 30 min incorporation. In both cases labelling can be detected in the interchromatin regions during early S-phase, at the boundary between interchromatin and heterochromatin during middle S-phase and in the heterochromatin domains during late S-phase. Considering their size, the isolated spots of labelling could be interpreted as single replication units which are subsequently activated throughout the different moments of the S-phase.  相似文献   

15.
S Yokota  T Oda 《Histochemistry》1984,80(6):591-595
Immunocytochemical localization of serine:pyruvate aminotransferase (SPT) in rat hepatocytes was studied using a protein A-gold technique. Rat liver was fixed by perfusion. Vibratome sections (100 micron thick) of the liver were embedded in Epon or Lowicryl K4M. Ultrathin sections were incubated with antiSPT, followed by protein A-gold complex. Gold particles representing the antigenic sites for SPT were seen in three subcellular compartments, peroxisomes, mitochondria, and cytoplasm. In the control experiments the specificity of the immunolabelling was confirmed. Quantitative analysis of the labelling density showed that main subcellular compartments containing SPT are mitochondria and peroxisomes. In addition, the gold particles distributing in the cytoplasm were 16%-29% of the total labelling. The result indicated that the cytoplasm also contains SPT with a low density.  相似文献   

16.
Previous work established that gold morphs of the Midas cichlid (Cichlasoma citrinellum) dominate normal ones of about the same size. Left unresolved, however, was whether the gold morphs dominate because they are inherently more aggressive or because the gold colour inhibits aggression. The issue was clarified here by comparing levels of aggression within groups of golds only, normals only, and golds plus normals. At first the groups of golds were the least aggressive. But 2 days later the levels of aggression in the other groups fell to about that of the golds. We conclude therefore that the gold colour inhibits attack, but that this effect is only discernible in groups when they are establishing inter-individual relationships disappearing when the groups stabilize. We suggest that gold coloration inhibits attacking by stimulating fear responses.  相似文献   

17.
Summary In order to investigate at ultrastructural level the mechanism of DNA synthesis progression during the different moments of S-phase a bromodeoxyuridine-anti bromodeoxyuridine (BrdU-anti BrdU) method has been applied to synchronized 3T3 fibroblasts. After 30 min BrdU incorporation, five different labelling patterns can be identified and should be related to early, middle and late S-phase. These patterns are represented mainly by diffuse labelling localized in different nuclear domains and by quite rare cases in which the labelling is limited to isolated clusters of gold particles. After a 5-min pulse with BrdU it is possible to observe isolated clusters of gold particles at each moment of S-phase, which, however, exhibit the same distribution of the five principal labelling patterns observed after 30 min incorporation. In both cases labelling can be detected in the interchromatin regions during early S-phase, at the boundary between interchromatin and heterochromatin during middle S-phase and in the heterochromatin domains during late S-phase. Considering their size, the isolated spots of labelling could be interpreted as single replication units which are subsequently activated throughout the different moments of the S-phase.  相似文献   

18.
Quantitative estimation of the binding of gold-conjugated ligands to various cell organelles has become a commonly used method to quantify the amount of ligand-binding sites associated with those organelles. However, often a small percentage of organelles is labeled or the density of gold labeling is low. We have defined the "gold-labeled region" as a zone that has a boundary defined by the localization of the outermost gold particles. Such a phenomenon was recently observed in a study of the internalization of gold-labeled native surfactant into lamellar bodies of cultured pulmonary type II cells. We estimated the size and density of gold-labeled regions in lamelar bodies using a simple stereological approach and demonstrated that the low percentage of gold-labeled organelles can be explained as a result of the probability of random selecting through the labeled areas. Our method, which permits use of transmission electron microscopy to calculate the true parameters of gold-labeled regions, can significantly facilitate analyses of ligand binding to various cell compartments.  相似文献   

19.
Summary We have used both the enzyme cytochemical method with lead nitrate as a capture agent and an immunological method at the electron microscope level to localize plasma membrane 5-nucleotidase in rat peritoneal resident macrophages during the initial interactions of latex beads or heat-killedEscherichia coli with the cell during phagocytosis. In macrophages at rest, cytochemical reaction product was evenly distributed along the external surface of the plasma membrane. However, when the cells were phagocytosing latex beads or bacteria, reaction product covered the entire surface of the adhering particles. To determine whether the apparent redistribution of 5-nucleotidase onto the adhering particle was fact or artifact, we localized 5-nucleotidase using a monoclonal antibody and an immunogold labelling technique. In macrophages binding or beginning to ingest bacteria, gold particles were distributed along the plasma membrane, except at the sites of cell-bacterium internalization. More significantly, the adhering bacteria were free of gold particles and therefore had no 5-nucleotidase on their surfaces. Latex beads proved to be unsuitable as a test particle because the gold particles stuck to them non-specifically. We conclude that the artifactual redistribution of lead-phosphate reaction product is a major drawback of enzyme cytochemical methods when used on cell surfaces and that the immunogold labelling technique is more reliable.  相似文献   

20.
Immunocytochemical markers prepared by labelling colloidal gold with antibodies are gaining wide acceptance both in transmission and scanning electron microscopy. However, detailed information on the process and extent of adsorption of IgG and IgE in particular are still lacking. The adsorption isotherm of mouse monoclonal 125I-IgE antibovine milk beta-lactoglobulin was studied quantitatively with colloidal gold buffered at pH 6.1-8.8 (28 nm in particle diameter). At low coverage of the particles (less that or equal to 5 molecules per particle), the isotherm was independent of pH. In the presence of a large excess of IgE, the highest coverage was obtained at pH 6.1 near the pI of IgE (5.2-5.8). The binding constants were higher at low coverage (side-on adsorption) than at high coverage where desorption was observed. IgE-Au markers were unreactive towards the immobilized antigen and did not bind to receptors for IgE of rat basophilic leukemia cells (RBL-1). The reactivity of immobilized anti-IgE antibodies with IgE-Au markers increased as a function of particle coverage. Mapping of RBL-1 cell membrane IgE receptors was achieved by incubating successively IgE-sensitized RBL-1 cells with anti-IgE antibodies and a protein A-gold marker at 4 degrees C. Surface clusters developed when the cells were incubated at 37 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号