首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over-expressing an amino acid permease in Vicia narbonensis seeds increases sink strength for N that is evident from the higher seed protein content and seed weight. Here, the effect of increased seed sink strength of line AAP-12 on growth, development, and on whole plant carbon and nitrogen uptake and partitioning is analysed. AAP-12 plants have a prolonged growth period. Accumulation and partitioning of dry matter and N in leaves, stems, and pods are higher whereas remobilization to the seeds is delayed, indicating that the switch from growth to reserve allocation and remobilization is delayed. Measuring uptake and allocation of (15)N-ammonia applied via the roots revealed a higher and longer label uptake period during maturation. Measuring whole plant carbon fixation and allocation after (13)C labelling shows higher levels at maturation, particularly in seeds, indicating higher seed sink strength for C and increased allocation into maturing seeds. Levels of cytokinins were dramatically increased in AAP-12 seeds indicating its role in nitrogen-mediated growth stimulation. AAP-12 seeds have higher natural abundances for (13)C indicating increased C fixation via PEP carboxylase in order to meet the higher demand of carbon acceptors for amino acid synthesis. In summary, increased seed sink strength for N in AAP-12 stimulates seed growth, but also that of vegetative organs, which finally leads to a higher ratio of vegetative to seed biomass at maturity and thus a lower harvest index. Therefore, the increased N uptake due to higher seed demand of AAP-12 is partly compensated by growth stimulation of vegetative organs.  相似文献   

2.
The value of quantitative trait loci (QTL) is dependant on the strength of association with the traits of interest, allelic diversity at the QTL and the effect of the genetic background on the expression of the QTL. A number of recent studies have identified QTL associated with traits of interest that appear to be independent of the environment but dependant on the genetic background in which they are found. Therefore, the objective of this study was to validate universal and/or mega-environment-specific seed yield QTL that have been previously reported in an independent recombinant inbred line (RIL) population derived from the cross between an elite Chinese and Canadian parent. The population was evaluated at two field environments in China and in five environments in Canada in 2005 and 2006. Of the seven markers linked to seed yield QTL reported by our group in a previous study, four were polymorphic between the two parents. No association between seed yield and QTL was observed. The result could imply that seed yield QTL were either not stable in this particular genetic background or harboured different alleles than the ones in the original mapping population. QTLU Satt162 was associated with several agronomic traits of which lodging was validated. Both the non-adapted and adapted parent contributed favourable alleles to the progeny. Therefore, plant introductions have been validated as a source of favourable alleles that could increase the genetic variability of the soybean germplasm pool and lead to further improvements in seed yield and other agronomic traits.  相似文献   

3.
Agricultural environments deteriorate due to excess nitrogen application.Breeding for low nitrogen responsive genotypes can reduce soil nitrogen input.Rice genotypes respond variably to soil available nitrogen.The present study attempted quantification of genotype x nitrogen level interaction and mapping of quantitative trait loci (QTLs) associated with nitrogen use efficiency (NUE) and other associated agronomic traits.Twelve parameters were observed across a set of 82 double haploid (DH) lines derived from IR64/Azucena.Three nitrogen regimes namely,native (0 kg/ha; no nitrogen applied),optimum (100 kg/ha) and high (200 kg/ha) replicated thrice were the environments.The parents and DH lines were significantly varying for all traits under different nitrogen regimes.All traits except plant height recorded significant genotype x environment interaction.Individual plant yield was positively correlated with nitrogen use efficiency and nitrogen uptake.Sixteen QTLs were detected by composite interval mapping.Eleven QTLs showed significant QTL x environment interactions.On chromosome 3,seven QTLs were detected associated with nitrogen use,plant yield and associated traits.A QTL region between markers RZ678,RZ574 and RZ284 was associated with nitrogen use and yield.This chromosomal region was enriched with expressed gene sequences of known key nitrogen assimilation genes.  相似文献   

4.
Storage protein synthesis is dependent on available nitrogen in the seed, which may be controlled by amino acid import via specific transporters. To analyze their rate-limiting role for seed protein synthesis, a Vicia faba amino acid permease, VfAAP1, has been ectopically expressed in pea (Pisum sativum) and Vicia narbonensis seeds under the control of the legumin B4 promoter. In mature seeds, starch is unchanged but total nitrogen is 10% to 25% higher, which affects mainly globulin, vicilin, and legumin, rather than albumin synthesis. Transgenic seeds in vitro take up more [14C]-glutamine, indicating increased sink strength for amino acids. In addition, more [14C] is partitioned into proteins. Levels of total free amino acids in growing seeds are unchanged but with a shift toward higher relative abundance of asparagine, aspartate, glutamine, and glutamate. Hexoses are decreased, whereas metabolites of glycolysis and the tricarboxylic acid cycle are unchanged or slightly lower. Phosphoenolpyruvate carboxylase activity and the phosphoenolpyruvate carboxylase-to-pyruvate kinase ratios are higher in seeds of one and three lines, indicating increased anaplerotic fluxes. Increases of individual seed size by 20% to 30% and of vegetative biomass indicate growth responses probably due to improved nitrogen status. However, seed yield per plant was not altered. Root application of [15N] ammonia results in significantly higher label in transgenic seeds, as well as in stems and pods, and indicates stimulation of nitrogen root uptake. In summary, VfAAP1 expression increases seed sink strength for nitrogen, improves plant nitrogen status, and leads to higher seed protein. We conclude that seed protein synthesis is nitrogen limited and that seed uptake activity for nitrogen is rate limiting for storage protein synthesis.  相似文献   

5.
The genetic basis of seed dormancy, a key life history trait important for adaptive evolution in plant populations, has yet been studied only using seeds produced under controlled conditions in greenhouse environments. However, dormancy is strongly affected by maternal environmental conditions, and interactions between seed genotype and maternal environment have been reported. Consequently, the genetic basis of dormancy of seeds produced under natural field conditions remains unclear. We examined the effect of maternal environment on the genetic architecture of seed dormancy using a recombinant inbred line (RIL) population derived from a cross between two locally adapted populations of Arabidopsis thaliana from Italy and Sweden. We mapped quantitative trait loci (QTL) for dormancy of seeds produced in the greenhouse and at the native field sites of the parental genotypes. The Italian genotype produced seeds with stronger dormancy at fruit maturation than did the Swedish genotype in all three environments, and the maternal field environments induced higher dormancy levels compared to the greenhouse environment in both genotypes. Across the three maternal environments, a total of nine dormancy QTL were detected, three of which were only detected among seeds matured in the field, and six of which showed significant QTL × maternal environment interactions. One QTL had a large effect on dormancy across all three environments and colocalized with the candidate gene DOG1. Our results demonstrate the importance of studying the genetic basis of putatively adaptive traits under relevant conditions.  相似文献   

6.
To enhance our understanding of the genetic basis of nitrogen use efficiency in maize (Zea mays), we have developed a quantitative genetic approach by associating metabolic functions and agronomic traits to DNA markers. In this study, leaves of vegetative recombinant inbred lines of maize, already assessed for their agronomic performance, were analyzed for physiological traits such as nitrate content, nitrate reductase (NR), and glutamine synthetase (GS) activities. A significant genotypic variation was found for these traits and a positive correlation was observed between nitrate content, GS activity and yield, and its components. NR activity, on the other hand, was negatively correlated. These results suggest that increased productivity in maize genotypes was due to their ability to accumulate nitrate in their leaves during vegetative growth and to efficiently remobilize this stored nitrogen during grain filling. Quantitative trait loci (QTL) for various agronomic and physiological traits were searched for and located on the genetic map of maize. Coincidences of QTL for yield and its components with genes encoding cytosolic GS and the corresponding enzyme activity were detected. In particular, it appears that the GS locus on chromosome 5 is a good candidate gene that can, at least partially, explain variations in yield or kernel weight. Because at this locus coincidences of QTLs for grain yield, GS, NR activity, and nitrate content were also observed, we hypothesize that leaf nitrate accumulation and the reactions catalyzed by NR and GS are coregulated and represent key elements controlling nitrogen use efficiency in maize.  相似文献   

7.
The development of sink organs such as fruits and seeds strongly depends on the amount of nitrogen that is moved within the phloem from photosynthetic‐active source leaves to the reproductive sinks. In many plant species nitrogen is transported as amino acids. In pea (Pisum sativum L.), source to sink partitioning of amino acids requires at least two active transport events mediated by plasma membrane‐localized proteins, and these are: (i) amino acid phloem loading; and (ii) import of amino acids into the seed cotyledons via epidermal transfer cells. As each of these transport steps might potentially be limiting to efficient nitrogen delivery to the pea embryo, we manipulated both simultaneously. Additional copies of the pea amino acid permease PsAAP1 were introduced into the pea genome and expression of the transporter was targeted to the sieve element‐companion cell complexes of the leaf phloem and to the epidermis of the seed cotyledons. The transgenic pea plants showed increased phloem loading and embryo loading of amino acids resulting in improved long distance transport of nitrogen, sink development and seed protein accumulation. Analyses of root and leaf tissues further revealed that genetic manipulation positively affected root nitrogen uptake, as well as primary source and sink metabolism. Overall, the results suggest that amino acid phloem loading exerts regulatory control over pea biomass production and seed yield, and that import of amino acids into the cotyledons limits seed protein levels.  相似文献   

8.
Nitrogen uptake and metabolism are central for vegetative and reproductive plant growth. This is reflected by the fact that nitrogen can be remobilized and reused within a plant, and this process is crucial for yield in most annual crops. A population of 146 recombinant inbred barley lines (F(8) and F(9) plants, grown in 2000 and 2001), derived from a cross between two varieties differing markedly in grain protein concentration, was used to compare the location of QTL associated with nitrogen uptake, storage and remobilization in flag leaves relative to QTL controlling developmental parameters and grain protein accumulation. Overlaps of support intervals for such QTL were found on several chromosomes, with chromosomes 3 and 6 being especially important. For QTL on these chromosomes, alleles associated with inefficient N remobilization were associated with depressed yield and higher levels of total or soluble organic nitrogen during grain filling and vice versa; therefore, genes directly involved in N recycling or genes regulating N recycling may be located on these chromosomes. Interestingly, the most prominent QTL for grain protein concentration (on chromosome 6) did not co-localize with QTL for nitrogen remobilization. However, QTL peaks for nitrate and soluble organic nitrogen were detected at this locus for plants grown in 2001 (but not in 2000). For these, alleles associated with low grain protein concentration were associated with higher soluble nitrogen levels in leaves during grain filling; therefore, gene(s) found at this locus might influence the nitrogen sink strength of developing barley grains.  相似文献   

9.
Soybean [Glycine max (L.) Merrill] seed oil is the primary global source of edible oil and a major renewable and sustainable feedstock for biodiesel production. Therefore, increasing the relative oil concentration in soybean is desirable; however, that goal is complex due to the quantitative nature of the oil concentration trait and possible effects on major agronomic traits such as seed yield or protein concentration. The objectives of the present study were to study the relationship between seed oil concentration and important agronomic and seed quality traits, including seed yield, 100-seed weight, protein concentration, plant height, and days to maturity, and to identify oil quantitative trait loci (QTL) that are co-localized with the traits evaluated. A population of 203 F4:6 recombinant inbred lines, derived from a cross between moderately high oil soybean genotypes OAC Wallace and OAC Glencoe, was developed and grown across multiple environments in Ontario, Canada, in 2009 and 2010. Among the 11 QTL associated with seed oil concentration in the population, which were detected using either single-factor ANOVA or multiple QTL mapping methods, the number of QTL that were co-localized with other important traits QTL were six for protein concentration, four for seed yield, two for 100-seed weight, one for days to maturity, and one for plant height. The oil-beneficial allele of the QTL tagged by marker Sat_020 was positively associated with seed protein concentration. The oil favorable alleles of markers Satt001 and GmDGAT2B were positively correlated with seed yield. In addition, significant two-way epistatic interactions, where one of the interacting markers was solely associated with seed oil concentration, were identified for the selected traits in this study. The number of significant epistatic interactions was seven for yield, four for days to maturity, two for 100-seed weight, one for protein concentration, and one for plant height. The identified molecular markers associated with oil-related QTL in this study, which also have positive effects on other important traits such as seed yield and protein concentration, could be used in the soybean marker breeding programs aimed at developing either higher seed yield and oil concentration or higher seed protein and oil concentration per hectare. Alternatively, selecting complementary parents with greater breeding values due to positive epistatic interactions could lead to the development of higher oil soybean cultivars.  相似文献   

10.
Oil content in rapeseed (Brassica napus L.) is generally regarded as a character with high heritability that is negatively correlated with protein content and influenced by plant developmental and yield related traits. To evaluate possible genetic interrelationships between these traits and oil content, QTL for oil content were mapped using data on oil content and on oil content conditioned on the putatively interrelated traits. Phenotypic data were evaluated in a segregating doubled haploid population of 282 lines derived from the F1 of a cross between the old German cultivar Sollux and the Chinese cultivar Gaoyou. The material was tested at four locations, two each in Germany and in China. QTLMapper version 1.0 was used for mapping unconditional and conditional QTL with additive (a) and locus pairs with additive × additive epistatic (aa) effects. Clear evidence was found for a strong genetic relationship between oil and protein content. Six QTL and nine epistatic locus pairs were found, which had pleiotropic effects on both traits. Nevertheless, two QTL were also identified, which control oil content independent from protein content and which could be used in practical breeding programs to increase oil content without affecting seed protein content. In addition, six additional QTL with small effects were only identified in the conditional mapping. Some evidence was apparent for a genetic interrelationship between oil content and the number of seeds per silique but no evidence was found for a genetic relationship between oil content and flowering time, grain filling period or single seed weight. The results indicate that for closely correlated traits conditional QTL mapping can be used to dissect the genetic interrelationship between two traits at the level of individual QTL. Furthermore, conditional QTL mapping can reveal additional QTL with small effects that are undetectable in unconditional mapping.  相似文献   

11.
Linolenic acid and seed lipoxygenases are associated with off flavours in soybean products. F5 recombinant inbred lines (RILs) from a cross between a low linolenic acid line (RG10) and a seed lipoxygenase-free line (OX948) were genotyped for simple sequence repeats (SSR), random amplified polymorphic DNA (RAPD), sequence-tagged sites (STS), and cleaved amplified polymorphic sequence (CAPS) markers and evaluated for seed and agronomic traits at 3 Ontario locations in 2 years. One hundred twenty markers covering 1247.5 cM were mapped to 18 linkage groups (LGs) in the soybean composite genetic map. Seed lipoxygenases L-1 and L-2 mapped as single major genes to the same location on LG G13-F. L-3 mapped to LG G11-E. This is the first report of a map position for L-3. A major quantitative trait locus (QTL) associated with reduced linolenic acid content was identified on LG G3-B2. QTLs for 12 additional seed and agronomic traits were detected. Linolenic acid content, linoleic acid content, yield, seed mass, protein content, and plant height QTL were present in at least 4 of 6 environments. Three to 8 QTLs per trait were detected that accounted for up to 78% of total variation. Linolenic acid and lipoxygenase loci did not overlap yield QTL, suggesting that it should be possible to develop high-yielding lines resistant to oxidative degradation by marker-assisted selection (MAS).  相似文献   

12.
Species performance depends on ecological strategies, revealed by suites of traits, conferring different relative ecological advantages in different environments. Although current knowledge on plant strategies along successional gradients is derived from studies conducted in situ, actually quantifying these strategies requires disentangling the effects of environmental factors from intrinsic differences between species.Here we tested whether allocation strategies and seed traits differ among successional stages and nitrogen levels. To this aim, we assessed biomass and nitrogen allocations and seed traits variations for 18 species, differing in life history and belonging to three stages of a Mediterranean old-field succession. These species were grown as monocultures in an experimental garden under limiting and non-limiting nitrogen supply.Early successional species allocated allometrically more nitrogen and proportionally more biomass to reproduction, and set more seeds than later successional species. Seed mass increased with successional status and was negatively related to seed number. Early successional species thus produced more but less-provisioned seeds, suggesting better colonization abilities. These patterns were not the sole consequence of the replacement of annuals by perennials along the successional gradient, since comparable trends were also observed within each life history. Allocation patterns were generally not altered by nitrogen supply and the higher nitrogen content in vegetative organs of plants grown under high nitrogen supply was not retranslocated from leaves to seeds during seed development.We therefore conclude that differences in plant ecological strategies in species characteristics from contrasting successional stages appear to be intrinsic properties of the studied species, and independent from environmental conditions.  相似文献   

13.
Khattak GS  Haq MA  Ashraf M  McNeilly T 《Hereditas》2001,134(3):211-217
Additive, dominance, and epistasis genetic basis of seed yield per plant, number of pods per plant, number of seeds per pod, and 1000 seed weight in mungbean (Vigna radiata (L.) Wilczek) have been examined, using Triple Test Cross (TTC) analysis. The material for TTC test was evaluated in two seasons i.e., kharif (July-October) and spring/summer (March-June), at the research station of the Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan. Epistasis was present significantly for number of pods per plant and number of seeds per pod when grown in the spring/summer season (March to June). Partition of epistasis showed that additive x additive ('i' type) interaction was an important component of number of pods per plant, and number of seeds per pod was found to be of both types 'i' type, and additive x dominance, and dominance x dominance ('j' and 'l' type) interactions. This indicated that epistasis might be a non-trivial factor in the inheritance of pods per plant, and seeds per pod in mungbean. The expression of epistasis was influenced differentially by particular genotypes, indicating that a limited number of genotypes may not be sufficient to detect non-allelic interactions for a trait in mungbean. Additive and dominance genetic components were significant for all four traits in kharif season (July to October) but only for seed yield and 1000 seed weight in spring/summer season. This suggests that the genes controlling seed yield per plant, and 1000 seed weight are equally sensitive to the environment. The predominance additive gene action in those traits is not significantly influenced by epistasis, suggesting that improvement of the traits can be achieved through standard selection procedures.  相似文献   

14.
Advanced backcross QTL analysis was used to identify quantitative trait loci (QTL) for agronomic performance in a population of BC2F3:5 introgression lines created from the cross of a Colombian large red-seeded commercial cultivar, ICA Cerinza, and a wild common bean accession, G24404. A total of 157 lines were evaluated for phenological traits, plant architecture, seed weight, yield and yield components in replicated trials in three environments in Colombia and genotyped with microsatellite, SCAR, and phaseolin markers that were used to create a genetic map that covered all 11 linkage groups of the common bean genome with markers spaced at an average distance of every 10.4 cM. Segregation distortion was most significant in regions orthologous for a seed coat color locus (R-C) on linkage group b08 and two domestication syndrome genes, one on linkage group b01 at the determinacy (fin) locus and the other on linkage group b02 at the seed-shattering (st) locus. Composite interval mapping analysis identified a total of 41 significant QTL for the eight traits measured of which five for seed weight, two for days to flowering, and one for yield were consistent across two or more environments. QTL were located on every linkage group with b06 showing the greatest number of independent loci. A total of 13 QTL for plant height, yield and yield components along with a single QTL for seed size showed positive alleles from the wild parent while the remaining QTL showed positive alleles from the cultivated parent. Some QTL co-localized with regions that had previously been described to be important for these traits. Compensation was observed between greater pod and seed production and smaller seed size and may have resulted from QTL for these traits being linked or pleiotropic. Although wild beans have been used before to transfer biotic stress resistance traits, this study is the first to attempt to simultaneously obtain a higher yield potential from wild beans and to analyze this trait with single-copy markers. The wild accession was notable for being from a unique center of diversity and for contributing positive alleles for yield and other traits to the introgression lines showing the potential that advanced backcrossing has in common bean improvement.  相似文献   

15.
Pea (Pisum sativum L.) is the third most important grain legume worldwide, and the increasing demand for protein-rich raw material has led to a great interest in this crop as a protein source. Seed yield and protein content in crops are strongly determined by nitrogen (N) nutrition, which in legumes relies on two complementary pathways: absorption by roots of soil mineral nitrogen, and fixation in nodules of atmospheric dinitrogen through the plant–Rhizobium symbiosis. This study assessed the potential of naturally occurring genetic variability of nodulated root structure and functioning traits to improve N nutrition in pea. Glasshouse and field experiments were performed on seven pea genotypes and on the ‘Cameor’ × ‘Ballet’ population of recombinant inbred lines selected on the basis of parental contrast for root and nodule traits. Significant variation was observed for most traits, which were obtained from non-destructive kinetic measurements of nodulated root and shoot in pouches, root and shoot image analysis, 15N quantification, or seed yield and protein content determination. A significant positive relationship was found between nodule establishment and root system growth, both among the seven genotypes and the RIL population. Moreover, several quantitative trait loci for root or nodule traits and seed N accumulation were mapped in similar locations, highlighting the possibility of breeding new pea cultivars with increased root system size, sustained nodule number, and improved N nutrition. The impact on both root or nodule traits and N nutrition of the genomic regions of the major developmental genes Le and Af was also underlined.  相似文献   

16.
Zhang L  Tan Q  Lee R  Trethewy A  Lee YH  Tegeder M 《The Plant cell》2010,22(11):3603-3620
Seed development and nitrogen (N) storage depend on delivery of amino acids to seed sinks. For efficient translocation to seeds, amino acids are loaded into the phloem in source leaves and along the long distance transport pathway through xylem-phloem transfer. We demonstrate that Arabidopsis thaliana AMINO ACID PERMEASE2 (AAP2) localizes to the phloem throughout the plant. AAP2 T-DNA insertion lines showed changes in source-sink translocation of amino acids and a decrease in the amount of seed total N and storage proteins, supporting AAP2 function in phloem loading and amino acid distribution to the embryo. Interestingly, in aap2 seeds, total carbon (C) levels were unchanged, while fatty acid levels were elevated. Moreover, branch and silique numbers per plant and seed yield were strongly increased. This suggests changes in N and C delivery to sinks and subsequent modulations of sink development and seed metabolism. This is supported by tracer experiments, expression studies of genes of N/C transport and metabolism in source and sink, and by phenotypic and metabolite analyses of aap2 plants. Thus, AAP2 is key for xylem to phloem transfer and sink N and C supply; moreover, modifications of N allocation can positively affect C assimilation and source-sink transport and benefit sink development and oil yield.  相似文献   

17.
Candidate plus trees (CPTs) of Pongamia pinnata , a potential biodiesel plant occurring across 10 locations in North Guwahati, were identified based on morphological markers (vegetative and reproductive) using combined analysis over locations. Identified CPTs were then multiplied using seed propagation technique in a nursery bed. The performance of the candidate trees with respect to seed and pod traits, the two most important characters with regard to oil, were evaluated using CROPSTAT software for inferring potential genotypes that can be included in programmes aimed at genetic improvement of the species. Total oil content from the seeds of plus trees was also analysed using solvent extraction procedure at their boiling points. Hexane extraction yielded maximum oil content from seeds (33%) compared with petroleum ether (30%). When the seed to solvent ratio varied, no significant difference was noticed on the total oil yield for an individual tree, although the recovery of solvent and the time taken for oil extraction were significantly reduced at higher ratios of solvent used.  相似文献   

18.
19.
Crop seeds are important sources of protein, oil, and carbohydrates for food, animal feeds, and industrial products. Recently, much attention has been paid to quality and functional properties of crop seeds. However, seed traits possess some distinct genetic characteristics in comparison with plant traits, which increase the difficulty of genetically improving these traits. In this study, diallel analysis for seed models with genotype by environment interaction (GE) effect was applied to estimate the variance-covariance components of seed traits. Mixed linear model approaches were used to estimate the genetic covariances between pair-wise seed and plant traits. The breeding values (BV) were divided into two categories for the seed models. The first category of BV was defined as the combination of direct additive, cytoplasmic, and maternal additive effects, which should be utilized for selecting stable cultivars over multi-environments. The three genetic effects, together with their GE interaction, were included in the second category of BV for selecting special lines to be grown in specific ecosystems. Accordingly, two types of selection indices for seed traits, i.e., general selection index and interaction selection index, were developed and constructed on the first and the second category BV, respectively. These proposed selection indices can be applied to solve the difficult task of simultaneously improving multiple seed traits in various environments. Data of crop seeds with regard to four seed traits and four yield traits based on the modified diallel crosses in Upland cotton (Gossypium hirsutum L.) were used as an example for demonstrating the proposed methodology.  相似文献   

20.
The energy allocation for vegetative and reproductive growth is regulated by developmental signals and environmental cues, which subsequently affects seed output. However, the molecular mechanism underlying how plants coordinate yield-related traits to control yield in changing source–sink relationships remains largely unknown. Here, we discovered the lectin receptor-like kinase LecRK-VIII.2 as a specific receptor-like kinase that coordinates silique number, seed size, and seed number to determine seed yield in Arabidopsis (Arabidopsis thaliana). The lecrk-VIII.2 mutants develop smaller seeds, but more siliques and seeds, leading to increased yield. In contrast, the plants overexpressing LecRK-VIII.2 form bigger seeds, but less siliques and seeds, which results in similar yield to that of wild-type plants. Interestingly, LecRK-VIII.2 promotes the growth of the rosette, root, and stem by coordinating the source–sink relationship. Additionally, LecRK-VIII.2 positively regulates cell expansion and proliferation in the seed coat, and maternally controls seed size. The genetic and biochemical analyses demonstrated that LecRK-VIII.2 acts upstream of the mitogen-activated protein kinase (MAPK) gene MPK6 to regulate silique number, seed size, and seed number. Collectively, these findings uncover LecRK-VIII.2 as an upstream component of the MAPK signaling pathway to control yield-related traits and suggest its potential for crop improvement aimed at developing plants with stable yield, a robust root system, and improved lodging resistance.

A lectin receptor-like kinase regulates yield-related traits and coordinates the source–sink relationship in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号