首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tetradomain voltage-gated sodium channels from rat skeletal muscle (rSkM1) and from human heart (hH1) possess different sensitivities to the 22-amino-acid peptide toxin, mu-conotoxin GIIIA (mu-CTX). rSkM1 is sensitive (IC50 = 51.4 nM) whereas hH1 is relatively resistant (IC50 = 5700 nM) to the action of the toxin, a difference in sensitivity of >100-fold. The affinity of the mu-CTX for a chimera formed from domain 1 (D1), D2, and D3 from rSkM1and D4 from hH1 (SSSH; S indicates origin of domain is skeletal muscle and H indicates origin of domain is heart) was paradoxically increased approximately fourfold relative to that of rSkM1. The source of D3 is unimportant regarding the difference in the relative affinity of rSkM1 and hH1 for mu-CTX. Binding of mu-CTX to HSSS was substantially decreased (IC50 = 1145 nM). Another chimera with a major portion of D2 deriving form hH1 showed no detectable binding of mu-CTX (IC50 > 10 microM). These data indicate that D1 and, especially, D2 play crucial roles in forming the mu-CTX receptor. Charge-neutralizing mutations in D1 and D2 (Asp384, Asp762, and Glu765) had no effect on toxin binding. However, mutations at a neutral and an anionic site (residues 728 and 730) in S5-S6/D2 of rSkM1, which are not in the putative pore region, were found to decrease significantly the mu-CTX affinity with little effect on tetrodotoxin binding (</=1.3-fold increase in affinity). Furthermore, substitution at Asp730 with cysteine and exposure to Cd2+ or methanethiosulfonate reagents had no significant effect on sodium currents, consistent with this residue not contributing to the pore.  相似文献   

2.
We have studied mu-conotoxin (mu-CTX) block of rat skeletal muscle sodium channel (rSkM1) currents in which single amino acids within the pore (P-loop) were substituted with cysteine. Among 17 cysteine mutants expressed in Xenopus oocytes, 7 showed significant alterations in sensitivity to mu-CTX compared to wild-type rSkM1 channel (IC50 = 17.5 +/- 2.8 nM). E758C and D1241C were less sensitive to mu-CTX block (IC50 = 220 +/- 39 nM and 112 +/- 24 nM, respectively), whereas the tryptophan mutants W402C, W1239C, and W1531C showed enhanced mu-CTX sensitivity (IC50 = 1.9 +/- 0.1, 4.9 +/- 0.9, and 5.5 +/- 0.4 nM, respectively). D400C and Y401C also showed statistically significant yet modest (approximately twofold) changes in sensitivity to mu-CTX block compared to WT (p < 0.05). Application of the negatively charged, sulfhydryl-reactive compound methanethiosulfonate-ethylsulfonate (MTSES) enhanced the toxin sensitivity of D1241C (IC50 = 46.3 +/- 12 nM) while having little effect on E758C mutant channels (IC50 = 199.8 +/- 21.8 nM). On the other hand, the positively charged methanethiosulfonate-ethylammonium (MTSEA) completely abolished the mu-CTX sensitivity of E758C (IC50 > 1 microM) and increased the IC50 of D1241C by about threefold. Applications of MTSEA, MTSES, and the neutral MTSBN (benzyl methanethiosulfonate) to the tryptophan-to-cysteine mutants partially or fully restored the wild-type mu-CTX sensitivity, suggesting that the bulkiness of the tryptophan's indole group is a determinant of toxin binding. In support of this suggestion, the blocking IC50 of W1531A (7.5 +/- 1.3 nM) was similar to W1531C, whereas W1531Y showed reduced toxin sensitivity (14.6 +/- 3.5 nM) similar to that of the wild-type channel. Our results demonstrate that charge at positions 758 and 1241 are important for mu-CTX toxin binding and further suggest that the tryptophan residues within the pore in domains I, III, and IV negatively influence toxin-channel interaction.  相似文献   

3.
Li RA  Sato K  Kodama K  Kohno T  Xue T  Tomaselli GF  Marbán E 《FEBS letters》2002,511(1-3):159-164
mu-Conotoxin (mu-CTX) inhibits Na+ flux by obstructing the Na+ channel pore. Previous studies of mu-CTX have focused only on charged toxin residues, ignoring the neutral sites. Here we investigated the proximity between the C-terminal neutral alanine (A22) of mu-CTX and the Na+ channel pore by replacing it with the negatively charged glutamate. The analog A22E and wild-type (WT) mu-CTX exhibited identical nuclear magnetic resonance spectra except at the site of replacement, verifying that they have identical backbone structures. A22E significantly reduced mu-CTX affinity for WT mu1 Na+ channels (90-fold), as if the inserted glutamate repels the anionic pore receptor. We then looked for the interacting partner(s) of residue 22 by determining the potency of block of Y401K, Y401A, E758Q, D762K, D762A, E765K, E765A and D1241K channels by WT mu-CTX and A22E, followed by mutant cycle analysis to assess their individual couplings. Our results show that A22E interacts strongly with E765K from domain II (DII) (deltadeltaG=2.2 +/- 0.1 vs. <1 kcal/mol for others). We conclude that mu-CTX residue 22 closely associates with the DII pore in the toxin-bound channel complex. The approach taken may be further exploited to study the proximity of other neutral toxin residues with the Na+ channel pore.  相似文献   

4.
Functional comparison of skeletal muscle (rSkM1) and cardiac (hH1) voltage-gated sodium channel isoforms expressed in Chinese hamster ovary cells showed rSkM1 half-activation (V(a)) and inactivation (V(i)) voltages 7 and 10 mV more depolarized than hH1 V(a) and V(i), respectively. Internal papain perfusion removed fast inactivation from each isoform and caused a 20-mV hyperpolarizing shift in hH1 V(a), with an insignificant change in rSkM1 V(a). Activation voltage of the inactivation-deficient hH1 mutant, hH1Q3, was nearly identical to wild-type hH1 V(a), both before and after papain treatment, with hH1Q3 V(a) also shifted by nearly 20 mV after internal papain perfusion. These data indicate that while papain removes both hH1 and rSkM1 inactivation, it has a second effect only on hH1 that causes a shift in activation voltage. Internal treatment with an antibody directed against the III-IV linker essentially mimicked papain treatment by removing some inactivation from each isoform and causing a 12-mV shift in hH1 V(a), while rSkM1 V(a) remained constant. This suggests that some channel segment within, near, or interacting with the III-IV linker is involved in establishing hH1 activation voltage. Together the data show that rSkM1 and hH1 activation mechanisms are different and are the first to suggest a role for a cytoplasmic structure in the voltage-dependent activation of cardiac sodium channels.  相似文献   

5.
L J Hayward  R H Brown  Jr    S C Cannon 《Biophysical journal》1997,72(3):1204-1219
Several heritable forms of myotonia and hyperkalemic periodic paralysis (HyperPP) are caused by missense mutations in the alpha subunit of the skeletal muscle Na channel (SkM1). These mutations impair fast inactivation or shift activation toward hyperpolarized potentials, inducing persistent Na currents that may cause muscle depolarization, myotonia, and onset of weakness. It has been proposed that the aberrant Na current and resulting weakness will be sustained only if Na channel slow inactivation is also impaired. We therefore measured slow inactivation for wild-type and five mutant Na channels constructed in the rat skeletal muscle isoform (rSkM1) and expressed in HEK cells. Two common HyperPP mutations (T698M in domain II-S5 and M1585V in IV-S6) had defective slow inactivation. This defect reduced use-dependent inhibition of Na currents elicited during 50-Hz stimulation. A rare HyperPP mutation (M1353V in IV-S1) and mutations within the domain III-IV linker that cause myotonia (G1299E) or myotonia plus weakness (T1306M) did not impair slow inactivation. We also observed that slow inactivation of wild-type rSkM1 was incomplete; therefore it is possible that stable membrane depolarization and subsequent muscle weakness may be caused solely by defects in fast inactivation or activation. Model simulations showed that abnormal slow inactivation, although not required for expression of a paralytic phenotype, may accentuate muscle membrane depolarization, paralysis, and sensitivity to hyperkalemia.  相似文献   

6.
mu-Conotoxin (mu-CTX) specifically occludes the pore of voltage-dependent Na(+) channels. In the rat skeletal muscle Na(+) channel (mu1), we examined the contribution of charged residues between the P loops and S6 in all four domains to mu-CTX block. Conversion of the negatively charged domain II (DII) residues Asp-762 and Glu-765 to cysteine increased the IC(50) for mu-CTX block by approximately 100-fold (wild-type = 22.3 +/- 7.0 nm; D762C = 2558 +/- 250 nm; E765C = 2020 +/- 379 nm). Restoration or reversal of charge by external modification of the cysteine-substituted channels with methanethiosulfonate reagents (methanethiosulfonate ethylsulfonate (MTSES) and methanethiosulfonate ethylammonium (MTSEA)) did not affect mu-CTX block (D762C: IC(50, MTSEA+) = 2165.1 +/- 250 nm; IC(50, MTSES-) = 2753.5 +/- 456.9 nm; E765C: IC(50, MTSEA+) = 2200.1 +/- 550.3 nm; IC(50, MTSES-) = 3248.1 +/- 2011.9 nm) compared with their unmodified counterparts. In contrast, the charge-conserving mutations D762E (IC(50) = 21.9 +/- 4.3 nm) and E765D (IC(50) = 22.0 +/- 7.0 nm) preserved wild-type blocking behavior, whereas the charge reversal mutants D762K (IC(50) = 4139.9 +/- 687.9 nm) and E765K (IC(50) = 4202.7 +/- 1088.0 nm) destabilized mu-CTX block even further, suggesting a prominent electrostatic component of the interactions between these DII residues and mu-CTX. Kinetic analysis of mu-CTX block reveals that the changes in toxin sensitivity are largely due to accelerated toxin dissociation (k(off)) rates with little changes in association (k(on)) rates. We conclude that the acidic residues at positions 762 and 765 are key determinants of mu-CTX block, primarily by virtue of their negative charge. The inability of the bulky MTSES or MTSEA side chain to modify mu-CTX sensitivity places steric constraints on the sites of toxin interaction.  相似文献   

7.
The α-subunit cDNAs encoding voltage-sensitive sodium channels of human heart (hH1) and rat skeletal muscle (rSkM1) have been expressed in the tsA201 mammalian cell line, in which inactivation properties appear to be normal in contrast to Xenopus oocytes. A series of rSkM1/hH1 chimeric sodium channels has been evaluated to identify the domains of the α-subunits that are responsible for a set of electrophysiological differences between hH1 and rSkM1, namely, midpoints and slope factors of steady-state activation and inactivation, inactivation kinetics and recovery from inactivation kinetics and their voltage-dependence. The phenotype of chimeric channels in which each hH1 domain was successively introduced into a rSkM1 α-subunit framework confirmed the following conclusions. (i) The D4 and or/C-ter. are responsible for the slow inactivation of hH1 sodium channels. (ii) Concerning the other differences between rSkM1 and hH1: steady-state activation and inactivation, kinetics of recovery from inactivation, the phenotypes are determined probably by more than one domain of the α-subunit. Received: 20 January 1998/Revised: 19 March 1998  相似文献   

8.
S C Dudley  Jr  H Todt  G Lipkind    H A Fozzard 《Biophysical journal》1995,69(5):1657-1665
We describe a mutation in the outer vestibule region of the adult rat skeletal muscle voltage-gated Na+ channel (microliter) that dramatically alters binding of mu-conotoxin GIIIA (mu-CTX). Mutating the glutamate at position 758 to glutamine (E758Q) decreased mu-CTX binding affinity by 48-fold. Because the mutant channel showed both low tetrodotoxin (TTX) and mu-CTX affinities, these results suggested that mu-CTX bound to the outer vestibule and implied that the TTX- and mu-CTX-binding sites partially overlapped in this region. The mutation decreased the association rate of the toxin with little effect on the dissociation rate, suggesting that Glu-758 could be involved in electrostatic guidance of mu-CTX to its binding site. We propose a mechanism for mu-CTX block of the Na+ channel based on the analogy with saxitoxin (STX) and TTX, on the requirement of mu-CTX to have an arginine in position 13 to occlude the channel, and on this experimental result suggesting that mu-CTX binds in the outer vestibule. In this model, the guanidinium group of Arg-13 of the toxin interacts with two carboxyls known to be important for selectivity (Asp-400 and Glu-755), with the association rate of the toxin increased by interaction with Glu-758 of the channel.  相似文献   

9.
Mu-conotoxins (mu-CTXs) are Na+ channel-blocking, 22-amino acid peptides produced by the sea snail Conus geographus. Although K+ channel pore-blocking toxins show specific interactions with permeant ions and strong dependence on the ionic strength (mu), no such dependence has been reported for mu-CTX and Na+ channels. Such properties would offer insight into the binding and blocking mechanism of mu-CTX as well as functional and structural properties of the Na+ channel pore. Here we studied the effects of mu and permeant ion concentration ([Na+]) on mu-CTX block of rat skeletal muscle (mu1, Nav1.4) Na+ channels. Mu-CTX sensitivity of wild-type and E758Q channels increased significantly (by approximately 20-fold) when mu was lowered by substituting external Na+ with equimolar sucrose (from 140 to 35 mm Na+); however, toxin block was unaltered (p > 0.05) when mu was maintained by replacement of [Na+] with N-methyl-d-glucamine (NMG+), suggesting that the enhanced sensitivity at low mu was not due to reduction in [Na+]. Single-channel recordings identified the association rate constant, k(on), as the primary determinant of the changes in affinity (k(on) increased 40- and 333-fold for mu-CTX D2N/R13Q and D12N/R13Q, respectively, when symmetric 200 mm Na+ was reduced to 50 mm). In contrast, dissociation rates changed <2-fold for the same derivatives under the same conditions. Experiments with additional mu-CTX derivatives identified toxin residues Arg-1, Arg-13, and Lys-16 as important contributors to the sensitivity to external mu. Taken together, our findings indicate that mu-CTX block of Na+ channels depends critically on mu but not specifically on [Na+], contrasting with the known behavior of pore-blocking K+ channel toxins. These findings suggest that different degrees of ion interaction, underlying the fundamental conduction mechanisms of Na+ and K+ channels, are mirrored in ion interactions with pore-blocking toxins.  相似文献   

10.
mu-Conotoxins (mu-CTX) are potent oligopeptide blockers of sodium channels. The best characterized forms of mu-CTX, GIIIA and GIIIB, have similar primary and three-dimensional structures and comparable potencies (IC(50) approximately 30 nM) for block of wild-type skeletal muscle Na(+) channels. The two toxins are thus considered to be indistinguishable by their target channels. We have found mutations in the domain II pore region (D762K and E765K) that decrease GIIIB blocking affinity approximately 200-fold, but reduce GIIIA affinity by only approximately 4-fold, compared with wild-type channels. Synthetic mu-CTX GIIIA mutants reveal that the critical residue for differential recognition is at position 14, the site of the only charge difference between the two toxin isoforms. Therefore, engineered Na(+) channels, but not wild-type channels, can discriminate between two highly homologous conotoxins. Latent specificity of toxin-channel interactions, such as that revealed here, is a principle worthy of exploitation in the design and construction of improved biosensors.  相似文献   

11.
bTyrosine 401 of the skeletal muscle isoform (mu 1) of the rat muscle Na channel is an important determinant of high affinity block by tetrodotoxin (TTX) and saxitoxin (STX) in Na-channel isoforms. In mammalian heart Na channels, this residue is substituted by cysteine, which results in low affinity for TTX/STX and enhanced sensitivity to block by Zn2+ and Cd2+. In this study, we investigated the molecular basis for high affinity block of Na channels by STX and divalent cations by measuring inhibition of macroscopic Na+ current for a series of point mutations at residue Tyr401 of the rat mu 1 Na channel expressed in Xenopus oocytes. Substitution of Tyr401 by Gly, Ala, Ser, Cys, Asp, His, Trp, and Phe produced functional Na+ currents without major perturbation of gating or ionic selectivity. High affinity block by STX and neosaxitoxin (NEO) with Ki values in the range of 2.6-18 nM required Tyr, Phe, or Trp, suggestive of an interaction between an aromatic ring and a guanidinium group of the toxin. The Cys mutation resulted in a 7- and 23-fold enhancement of the dissociation rate of STX and NEO, respectively, corresponding to rapid toxin dissociation rates of cardiac Na channels. High affinity block by Zn2+ (Ki = 8-23 microM) required Cys, His, or Asp, three residues commonly found to coordinate directly with Zn2+ in metalloproteins. For the Cys mutant of mu 1 and also for the cardiac isoform Na channel (rh1) expressed in the L6 rat muscle cell line, inhibition of macroscopic Na+ conductance by Zn2+ reached a plateau at 85-90% inhibition, suggesting the presence of a substate current. The Asp mutant also displayed enhanced affinity for inhibition of conductance by Ca2+ (Ki = 0.3 mM vs approximately 40 mM in wild type), but block by Ca2+ was incomplete, saturating at approximately 69% inhibition. In contrast, Cd2+ completely blocked macroscopic current in the Cys mutant and the L6 cell line. These results imply that the magnitude of substate current depends on the particular residue at position 401 and the species of divalent cation. The His mutant also exhibited enhanced sensitivity to block by H+ with a pKa of approximately 7.5 for the His imidazole group. Our findings provide further evidence that residue 401 of mu 1 is located within the outer vestibule of the Na channel but external to the single-filing region for permeant ions.  相似文献   

12.
Voltage-gated sodium channels consist of a pore-forming alpha subunit associated with beta1 subunits and, for brain sodium channels, beta2 subunits. Although much is known about the structure and function of the alpha subunit, there is little information on the functional role of the 16 extracellular loops. To search for potential functional activities of these extracellular segments, chimeras were studied in which an individual extracellular loop of the rat heart (rH1) alpha subunit was substituted for the corresponding segment of the rat brain type IIA (rIIA) alpha subunit. In comparison with rH1, wild-type rIIA alpha subunits are characterized by more positive voltage-dependent activation and inactivation, a more prominent slow gating mode, and a more substantial shift to the fast gating mode upon coexpression of beta1 subunits in Xenopus oocytes. When alpha subunits were expressed alone, chimeras with substitutions from rH1 in five extracellular loops (IIS5-SS1, IISS2-S6, IIIS1-S2, IIISS2-S6, and IVS3-S4) had negatively shifted activation, and chimeras with substitutions in three of these (IISS2-S6, IIIS1-S2, and IVS3-S4) also had negatively shifted steady-state inactivation. rIIA alpha subunit chimeras with substitutions from rH1 in five extracellular loops (IS5-SS1, ISS2-S6, IISS2-S6, IIIS1-S2, and IVS3-S4) favored the fast gating mode. Like wild-type rIIA alpha subunits, all of the chimeric rIIA alpha subunits except chimera IVSS2-S6 were shifted almost entirely to the fast gating mode when coexpressed with beta1 subunits. In contrast, substitution of extracellular loop IVSS2-S6 substantially reduced the effectiveness of beta1 subunits in shifting rIIA alpha subunits to the fast gating mode. Our results show that multiple extracellular loops influence voltage-dependent activation and inactivation and gating mode of sodium channels, whereas segment IVSS2-S6 plays a dominant role in modulation of gating by beta1 subunits. Evidently, several extracellular loops are important determinants of sodium channel gating and modulation.  相似文献   

13.
KChIPs are a family of Kv4 K(+) channel ancillary subunits whose effects usually include slowing of inactivation, speeding of recovery from inactivation, and increasing channel surface expression. We compared the effects of the 270 amino acid KChIP2b on Kv4.3 and a Kv4.3 inner pore mutant [V(399, 401)I]. Kv4.3 showed fast inactivation with a bi-exponential time course in which the fast time constant predominated. KChIP2b expressed with wild-type Kv4.3 slowed the fast time constant of inactivation; however, the overall rate of inactivation was faster due to reduction of the contribution of the slow inactivation phase. Introduction of [V(399, 401)I] slowed both time constants of inactivation less than 2-fold. Inactivation was incomplete after 20s pulse durations. Co-expression of KChIP2b with Kv4.3 [V(399, 401)I] slowed inactivation dramatically. KChIP2b increased the rate of recovery from inactivation 7.6-fold in the wild-type channel and 5.7-fold in Kv4.3 [V(399,401)I]. These data suggest that inner pore structure is an important factor in the modulatory effects of KChIP2b on Kv4.3 K(+) channels.  相似文献   

14.
Several types of structurally homologous high voltage-gated Ca2+ channels (L-, P-and N-type) have been identified via biochemical, pharmacological and electrophysiological techniques. Among these channels, the cardiac L-type and the brain BI-2 Ca2+ channel display significantly different biophysical properties. The BI-2 channel exhibits more rapid voltage-dependent current activation and inactivation and smaller single-channel conductance compared to the L-type Ca2+ channel. To examine the molecular basis for the functional differences between the two structurally related Ca2+ channels, we measured macroscopic and single-channel currents from oocytes injected with wild-type and various chimeric channel 1 subunit cRNAs. The results show that a chimeric channel in which the segment between S5-SS2 in repeat IV of the cardiac L-type Ca2+ channel, was replaced by the corresponding region of the BI-2 channel, exhibited macroscopic current activation and inactivation time-courses and single-channel conductance, characteristic of the BI-2 Ca2+ channel. The voltage-dependence of steady-state inactivation was not affected by the replacement. Chimeras, in which the SS2-S6 segment in repeat III or IV of the cardiac channel was replaced by the corresponding BI-2 sequence, exhibited altered macroscopic current kinetics without changes in single-channel conductance. These results suggest that part of the S5-SS2 segment plays a critical role in determining voltage-dependent current activation and inactivation and single-channel conductance and that the SS2-S6 segment may control voltage-dependent kinetics of the Ca2+ channel.  相似文献   

15.
Intramuscular injection of alpha-bungarotoxin (αBGT) into rat extensor digitorum longus muscles produced pharmacological blockade of neuromuscular transmission and resulted in denervation-like changes (Berg, D. and Hall, Z. (1975), J. Physiol. (London) 244: 659–676). More than 80% of fibers from αBGT-injected muscles produced action potentials (ap's) in the presence of tetrodotoxin (TTX, 1 × 10?6 M). Chronic electrical stimulation of these muscles, below the level necessary to elicit a contraction, resulted in a marked return toward normal of sarcolemmal sensitivity to TTX. After 4 days of submechanical threshold stimulation, less than 45% of αBGT-injected fibers produced ap' in the presence of TTX, whereas more than 80% of unstimulated fibers from contralateral control muscles exhibited resistance to TTX. These findings indicate that in addition to sarcolemmal sensitivity to acetylcholine, sensitivity of the sodium conductance mechanism to TTX is also directly influenced by muscle activity independent of contraction.  相似文献   

16.
The TTX-sensitive rat skeletal muscle sodium channel (rSkM1) exhibits two modes of inactivation (fast vs slow) when the alpha subunit is expressed alone in Xenopus oocytes. In this study, two components are found in the voltage dependence of normalized current inactivation, one having a V1/2 in the expected voltage range (approximately -50 mV, I(N)) and the other with a more hyperpolarized V1/2 (approximately -130 mV, IH) at a holding potential of -90 mV. The I(N) component is associated with the gating mode having rapid inactivation and recovery from inactivation of the macroscopic current (N-mode), while IH corresponds to the slow inactivation and recovery mode (H-mode). These two components are interconvertible and their relative contribution to the total current varies with the holding potential: I(N) is favored by hyperpolarization. The interconversion between the two modes is voltage dependent and is well fit to a first-order two-state model with a voltage dependence of e-fold/8.6 mV and a V1/2 of -62 mV. When the rat sodium channel beta 1-subunit is coinjected with rSkM1, IH is essentially eliminated and the inactivation kinetics of macroscopic current becomes rapid. These two current components and their associated gating modes may represent two conformations of the alpha subunit, one of which can be stabilized either by hyperpolarization or by binding of the beta 1 subunit.  相似文献   

17.
Nichols DJ  Keeling PL  Spalding M  Guan H 《Biochemistry》2000,39(26):7820-7825
Chemical modification of maize starch synthase IIb-2 (SSIIb-2) using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDAC), which modifies acidic amino acid residues, resulted in a time- and concentration-dependent inactivation of SSIIb-2. ADPGlc was found to completely protect SSIIb-2 from inactivation by EDAC. These results suggest that glutamate or aspartate is important for SS activity. On the basis of the sequence identity of SS, conserved acidic amino acids were mutagenized to identify the specific amino acid residues important for SS activity. Three amino acids (D21, D139, and E391) were found to be important for SS activity. D21N showed 4% of the wild-type enzyme activity and a 10-fold decrease in the affinity for ADPGlc, while the conservative change from D21 to E resulted in a decrease in V(max) and no change in affinity for ADPGlc, suggesting that the negative charge is important for ADPGlc binding. When sites D139 and E391 were changed to their respective amide form, no SS activity was detected. With the conservative change, D139E showed a decrease in V(max) and no changes in apparent K(m) for substrates. E391D showed a 9-fold increase in K(m) for ADPGlc, a 12-fold increase in apparent K(m) for glycogen, and a 4-fold increase in apparent K(m) for amylopectin. The circular dichroism analysis indicates that these kinetic changes may not be due to a major conformation change in the protein. These results provide the first evidence that the conserved aspartate and glutamate residues could be involved in the catalysis or substrate binding of SS.  相似文献   

18.
1. In slice studies of mature and immature CA1 hippocampal pyramidal cells from rabbit, somatostatin 14 (SS14), the related peptide somatostatin 28(1-12) [SS(1-12)], and the synthetic analogue of somatostatin 14, SMS-201995 (SMS), had similar effects. When pressure-ejected onto cell somata, these peptides elicited depolarizations, often accompanied by action potential discharge. When applied to dendrites, the peptides produced depolarizations or hyperpolarizations. 2. When a large amount of one of the three somatostatin-related (SS) peptides was applied to the slice at some distance from the impaled cell, hyperpolarizations were observed that were not always blocked by tetrodotoxin (TTX) or low Ca2+. Since SS peptides were also found to depolarize interneurons in area CA1, it seems likely that the hyperpolarizations that were blocked by TTX or low Ca2+ were mediated via excitation of interneurons that in turn hyperpolarized pyramidal cells. 3. All SS peptides also had long-lasting effects on CA1 pyramidal cells that led to spontaneous firing of action potentials and an increase in the number of action potentials discharged in response to a given depolarizing current pulse; the spontaneous discharge effect was blocked by TTX or low Ca2+ plus Mn2+ and, thus, appeared to have a presynaptic mechanism. However, the increase in discharge in response to a constant depolarizing current pulse was not dependent on intact synaptic transmission and, therefore, was attributable to a direct postsynaptic effect of the SS peptides.  相似文献   

19.
We have expressed recombinant α-subunits of hH1 (human heart subtype 1), rSkM1 (rat skeletal muscle subtype 1) and hSkM1 (human skeletal muscle) sodium channels in human embryonic kidney cell line, namely the tsA201 cells and compared the effects of ATX II on these sodium channel subtypes. ATX II slows the inactivation phase of hH1 with little or no effect on activation. At intermediate concentrations of ATX II the time course of inactivation is biexponential due to the mixture of free (fast component, τfast h ) and toxin-bound (slow component, τslow h ) channels. The relative amplitude of τslow h allows an estimate of the IC50 values ∼11 nm. The slowing of inactivation in the presence of ATX II is consistent with destabilization of the inactivated state by toxin binding. Further evidence for this conclusion is: (i) The voltage-dependence of the current decay time constants (τ h ) is lost or possibly reversed (time constants plateau or increase at more positive voltages in contrast to these of untreated channels). (ii) The single channel mean open times are increased by a factor of two in the presence of ATX II. (iii) The recovery from inactivation is faster in the presence of ATX II. Similar effects of ATX II on rSkM1 channel behavior occur, but only at higher concentrations of toxin (IC50= 51 nm). The slowing of inactivation on hSkM1 is comparable to the one seen with rSkM1. A residual or window current appears in the presence of ATX II that is similar to that observed in channels containing mutations associated with some of the familial periodic paralyses. Received: 5 December 1995/Revised: 1 March 1996  相似文献   

20.
mu-Conotoxin GIIIA (mu-CTX) is a high-affinity ligand for the outer vestibule of selected isoforms of the voltage-gated Na(+) channel. The detailed bases for the toxin's high affinity binding and isoform selectivity are unclear. The outer vestibule is lined by four pore-forming (P) loops, each with an acidic residue near the mouth of the vestibule. mu-CTX has seven positively charged residues that may interact with these acidic P-loop residues. Using pair-wise alanine replacement of charged toxin and channel residues, in conjunction with double mutant cycle analysis, we determined coupling energies for specific interactions between each P-loop acidic residue and selected toxin residues to systematically establish quantitative restraints on the toxin orientation in the outer vestibule. Xenopus oocytes were injected with the mutant or native Na(+) channel mRNA, and currents measured by two-electrode voltage clamp. Mutant cycle analysis revealed novel, strong, toxin-channel interactions between K9/E403, K11/D1241, K11/D1532, and R19/D1532. Experimentally determined coupling energies for interacting residue pairs provided restraints for molecular dynamics simulations of mu-CTX docking. Our simulations suggest a refined orientation of the toxin in the pore, with toxin basic side-chains playing key roles in high-affinity binding. This modeling also provides a set of testable predictions for toxin-channel interactions, hitherto not described, that may contribute to high-affinity binding and channel isoform selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号