首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gnathiid species (Crustacea: Isopoda; one of the most common ectoparasites of coral reef fishes) from the Great Barrier Reef, Australia, was allowed to choose among fishes from three different families to feed on (using two species of fishes per family). Gnathiids showed a strong preference for labrids, rarely feeding on pomacentrids or apogonids. In a separate experiment, gnathiid host preference did not vary among three labrid fish species. Gnathiids that fed on labrids had higher survival than those that fed on apogonids. Male gnathiids that fed on labrids also moulted to the adult stage more quickly. This suggests that host specialization and local adaptation might be occurring between these ectoparasites and their host fishes at the host fish family level.  相似文献   

2.
An organism''s performance of any ecological task involves coordination of multiple functional systems. Feeding performance is influenced by locomotor abilities which are used during search and capture of prey, as well as cranial mechanics, which affect prey capture and processing. But, does this integration of functional systems manifest itself during evolution? We asked whether the locomotor and feeding systems evolved in association in one of the most prominent and diverse reef fish radiations, the Labridae. We examined features of the pectoral fins that affect swimming performance and aspects of the skull that describe force and motion of the jaws. We applied a recent phylogeny, calculated independent contrasts for 60 nodes and performed principal components analyses separately on contrasts for fin and skull traits. The major axes of fin and skull diversification are highly correlated; modifications of the skull to amplify the speed of jaw movements are correlated with changes in the pectoral fins that increase swimming speed, and increases in force capacity of the skull are associated with changes towards fins that produce high thrust at slow speeds. These results indicate that the labrid radiation involved a strong connection between locomotion and feeding abilities.  相似文献   

3.
Physical factors influencing the distribution and abundance of seven common labrid fishes were examined over four rocky reef locations in northeastern New Zealand. Depth and exposure for each species (both within and among sexes) were related to pectoral fin aspect ratio. Each of the four locations (two mainland and two island) displayed distinct labrid assemblages, which were consistent over time, likely due to the influence of the East Auckland Current. There was a consistent depth-related trend for most species, regardless of location. Several species also showed a sex related depth difference. There was also a trend for some species to be associated with certain levels of wave exposure. For most species, the relationship between pectoral fin aspect ratio and the above physical variables was not as strongly evident in this temperate assemblage as has been previously found in tropical reef fish systems. Although some species did follow the predicted shifts in fin aspect ratio with depth and/or exposure, the observed trends were unrelated to fin aspect ratio for many other species. These findings suggest that wave exposure may not be as important for labrids on northeastern New Zealand reefs as it may be in tropical coral reefs systems. The lower fin aspect ratios for New Zealand labrids, compared to tropical labrids, suggest that New Zealand labrids represent a subset of the total pectoral fin diversity in the Labridae. Consequently, the potential for distinct trends in fin aspect ratio and physical variables to be evident may be reduced.  相似文献   

4.
The family Labridae (including scarines and odacines) contains 82 genera and about 600 species of fishes that inhabit coastal and continental shelf waters in tropical and temperate oceans throughout the world. The Labridae (the wrasses) is the fifth largest fish family and second largest marine fish family, and is one of the most morphologically and ecologically diversified families of fishes in size, shape, and color. Labrid phylogeny is a long-standing problem in ichthyology that is part of the larger question of relationships within the suborder Labroidei. A phylogenetic analysis of labrids was conducted to investigate relationships among the six classical tribes of wrasses, the affinities of the wrasses to the parrotfishes (scarines), and the broad phylogenetic structure among labrid genera. Four gene fragments were sequenced from 98 fish species, including 84 labrid fishes and 14 outgroup taxa. Taxa were chosen from all major labrid clades and most major global ocean regions where labrid fishes exist, as well as cichlid, pomacentrid, and embiotocid outgroups. From the mitochondrial genome we sequenced portions of 12S rRNA (1000 bp) and 16S rRNA (585 bp), which were aligned by using a secondary structure model. From the nuclear genome, we sequenced part of the protein-coding genes RAG2 (846 bp) and Tmo4C4 (541 bp). Maximum likelihood, maximum parsimony, and Bayesian analyses on the resulting 2972 bp of DNA sequence produced similar topologies that confirm the monophyly of a family Labridae that includes the parrotfishes and butterfishes and strong support for many previously identified taxonomic subgroups. The tribe Hypsigenyini (hogfishes, tuskfishes) is the sister group to the remaining labrids and includes odacines and the chisel-tooth wrasse Pseudodax moluccanus, a species previously considered close to scarines. Cheilines and scarines are sister-groups, closely related to the temperate Labrini, and pseudocheilines and cheilines are split in all phylogenies. The razorfishes (novaculines) and temperate pseudolabrines form successive sister clades to the large crown group radiation of the Julidini. The cleaner wrasses (Labrichthyini) are nested within this radiation and several julidine genera do not appear to be monophyletic (e.g., Coris and Halichoeres). Invasion of temperate water by this predominantly tropical group has occurred multiple times and the reconstruction of biogeography assuming an Indo-Pacific ancestor results in five different lineages invading the Atlantic/Caribbean region. Functional novelties in the feeding apparatus have allowed labrid fishes to occupy nearly every feeding guild in reef environments, and trophic variation is a central axis of diversification in this family.  相似文献   

5.
Successful fish feeding often requires the coordination of several complex motor and sensory systems to ensure that food is accurately detected, approached, acquired, and consumed. In the present study, we address feeding behaviour as a coordinated set of multiple, facultatively independent, anatomical systems. We sought to determine whether the patterns of interaction between trophic, locomotor, and oculomotor systems are associated with changes in morphology and ecology within a closely-related, but trophically divergent, group of fishes. We present a quantitative kinematic analysis of skull motion, locomotor behaviour, and oculomotor responses during feeding to assess coordination in three functional systems directly involved in feeding. We use coordination profiles to depict the feeding behaviours of three carnivorous coral reef fishes of the tribe Cheilinini in the family Labridae (the wrasses): Cheilinus fasciatus (a slow-swimming predator of benthic invertebrates), Epibulus insidiator (a slow-stalking predator with extraordinary jaw protrusion), and Oxycheilinus digrammus (a fast-attack predator). Differences were detected in several variables relating to jaw, body, fin, and eye movements. Overall patterns of coordination were more similar between E. insidiator and O. digrammus , which are capable of capturing elusive prey, than between C. fasciatus and E. insidiator , which are the two most closely-related species among the three. Evidence for the evolution of coordination patterns among cheiline fishes suggests that the sensory-motor systems involved in processing stimuli and coordinating a physical response during feeding have changed considerably, even among closely-related species.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 289–308.  相似文献   

6.
The Labridae (including wrasses, the Odacidae and the Scaridae) is a species‐rich group of perciform fishes whose members are prominent inhabitants of warm‐temperate and tropical reefs worldwide. We analyse functionally relevant morphometrics for the feeding apparatus of 130 labrid species found on the Great Barrier Reef and use these data to explore the morphological and mechanical basis of trophic diversity found in this assemblage. Morphological measurements were made that characterize the functional and mechanical properties of the oral jaws that are used in prey capture and handling, the hyoid apparatus that is used in expanding the buccal cavity during suction feeding, and the pharyngeal jaw apparatus that is used in breaking through the defences of shelled prey, winnowing edible matter from sand and other debris, and pulverizing the algae, detritus and rock mixture eaten by scarids (parrotfishes). A Principal Components Analysis on the correlation matrix of a reduced set of ten variables revealed complete separation of scarids from wrasses on the basis of the former having a small mouth with limited jaw protrusion, high mechanical advantage in jaw closing, and a small sternohyoideus muscle and high kinematic transmission in the hyoid four‐bar linkage. Some scarids also exhibit a novel four‐bar linkage conformation in the oral jaw apparatus. Within wrasses a striking lack of strong associations was found among the mechanical elements of the feeding apparatus. These weak associations resulted in a highly diverse system in which functional properties occur in many different combinations and reflect variation in feeding ecology. Among putatively monophyletic groups of labrids, the cheilines showed the highest functional diversity and scarids were moderately diverse, in spite of their reputation for being trophically monomorphic and specialized. We hypothesize that the functional and ecological diversity of labrids is due in part to a history of decoupled evolution of major components of the feeding system (i.e. oral jaws, hyoid and pharyngeal jaw apparatus) as well as among the muscular and skeletal elements of each component. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82 , 1–25.  相似文献   

7.
Although coral reefs are renowned biodiversity hotspots it is not known whether they also promote the evolution of exceptional ecomorphological diversity. We investigated this question by analysing a large functional morphological dataset of trophic characters within Labridae, a highly diverse group of fishes. Using an analysis that accounts for species relationships, the time available for diversification and model uncertainty we show that coral reef species have evolved functional morphological diversity twice as fast as non-reef species. In addition, coral reef species occupy 68.6% more trophic morphospace than non-reef species. Our results suggest that coral reef habitats promote the evolution of both trophic novelty and morphological diversity within fishes. Thus, the preservation of coral reefs is necessary, not only to safeguard current biological diversity but also to conserve the underlying mechanisms that can produce functional diversity in future.  相似文献   

8.
Zooplanktivory is one of the most distinct trophic niches in coral reef fishes, and a number of skull traits are widely recognized as being adaptations for feeding in midwater on small planktonic prey. Previous studies have concluded that zooplanktivores have larger eyes for sharper visual acuity, reduced mouth structures to match small prey sizes, and longer gill rakers to help retain captured prey. We tested these three traditional hypotheses plus two novel adaptive hypotheses in labrids, a clade of very diverse coral reef fishes that show multiple independent evolutionary origins of zooplanktivory. Using phylogenetic comparative methods with a data set from 21 species, we failed to find larger eyes in three independent transitions to zooplanktivory. Instead, an impression of large eyes may be caused by a size reduction of the anterior facial region. However, two zooplanktivores (Clepticus parrae and Halichoeres pictus) possess several features interpreted as adaptations to zooplankton feeding, namely large lens diameters relative to eye axial length, round pupil shape, and long gill rakers. The third zooplanktivore in our analysis, Cirrhilabrus solorensis, lacks all above features. It remains unclear whether Cirrhilabrus shows optical specializations for capturing planktonic prey. Our results support the prediction that increased visual acuity is adaptive for zooplanktivory, but in labrids increases in eye size are apparently not part of the evolutionary response.  相似文献   

9.

Background  

Major modifications to the pharyngeal jaw apparatus are widely regarded as a recurring evolutionary key innovation that has enabled adaptive radiation in many species-rich clades of percomorph fishes. However one of the central predictions of this hypothesis, that the acquisition of a modified pharyngeal jaw apparatus will be positively correlated with explosive lineage diversification, has never been tested. We applied comparative methods to a new time-calibrated phylogeny of labrid fishes to test whether diversification rates shifted at two scales where major pharyngeal jaw innovations have evolved: across all of Labridae and within the subclade of parrotfishes.  相似文献   

10.
A core eco‐evolutionary aim is to better understand the factors driving the diversification of functions in ecosystems. Using phylogenetic, trophic, and functional information, we tested whether trophic habits (i.e. feeding guilds) affect lineage and functional diversification in two major radiations of reef fishes. Our results from wrasses (Labridae) and damselfishes (Pomacentridae) do not fully support the ‘dead‐end’ hypothesis that specialisation leads to reduce speciation rates because the tempo of lineage diversification did not substantially vary among guilds in both fish families. Our findings also demonstrate a tight relationship between trophic habits and functional roles held by fish in reef ecosystems, which is not associated with a variation in the tempo of functional diversification among guilds. By illustrating the pivotal importance of the generalist feeding strategy during the evolutionary history of reef fishes, our study emphasises the role of this feeding guild as a reservoir for future diversity.  相似文献   

11.
Ecomorphology: Experimental Functional Anatomy for Ecological Problems   总被引:2,自引:0,他引:2  
It is generally believed that the functional design of an organismrelates to its ecology, yet this ecomorphological paradigm hashistorically suffered from the lack of a rigorous frameworkfor its implementation. I present a methodology for experimentallyexploring the ecological consequences of variation in morphology.The central idea is that morphology influences ecology by limitingthe ability of the individual to perform key tasks in its dailylife. Inthis scheme the effect of morphological variation onbehavioral performance is first tested in laboratory experiments.As the behavioral capability of an individual defines the rangeof ecological resources that it can potentially make use of(the potential niche), the second step in the scheme involvescomparing the potential niche of an individual to actual patternsof resource use (the realized niche). This permits a quantitativeassessment of the significance of an organism's maximal capabilitiesin determining actual patterns of resource use. An example is presented from work on the feeding biology offishes in the family Labridae (wrasses and parrotfishes). Mostlabrids feed by crushing shelled prey in their powerful pharyngealjaws. This example explores the dietary consequences of variationin crushing strength amongand within species. Crushing strengthwas estimated from biomechanical analyses of the crushingapparatusin several species, and these predictions of relative strengthwere tested in laboratory feeding experiments with hard-shelledprey. Morphology accurately predicted relative crushing ability,and the final section of the study explored the effect of variationin crushing ability on diet. Within each of three species crushingstrength appears to underlie a major ontogentic dietary switchfrom soft-bodied prey to a diet dominated by hard-shelled prey.In each species this switch occurred at about the same crushingstrength, around 5 Newtons (N), in spite of the fact that thiscrushing strength is achieved by the three species at differentbody sizes. Diet breadth increases during ontogeny in each species,until a crushing strength of 5 N is achieved, when diet breadthbegins to decline. The strongest fishes specialized almost entirelyon molluscs and sea urchins. Thus, these labrids take advantageof ontogenetic and interspecific differences in crushing strengthby including harder and harder prey in their diet, and ultimatelyspecializing on hard prey types. The specialized organizationof the labrid pharyngeal jaws can be viewed as a key innovationthat has permitted this lineage of fishes to invade the mollusceating niche, a relatively empty trophic niche within the highlyspeciose and diverse communities of coral reef fishes.  相似文献   

12.
Functional traits have been fundamental to the evolution and diversification of entire fish lineages on coral reefs. Yet their relationship with the processes promoting speciation, extinction and the filtering of local species pools remains unclear. We review the current literature exploring the evolution of diet, body size, water column use and geographic range size in reef‐associated fishes. Using published and new data, we mapped functional traits on to published phylogenetic trees to uncover evolutionary patterns that have led to the current functional diversity of fishes on coral reefs. When examining reconstructed patterns for diet and feeding mode, we found examples of independent transitions to planktivory across different reef fish families. Such transitions and associated morphological alterations may represent cases in which ecological opportunity for the exploitation of different resources drives speciation and adaptation. In terms of body size, reconstructions showed that both large and small sizes appear multiple times within clades of mid‐sized fishes and that extreme body sizes have arisen mostly in the last 10 million years (Myr). The reconstruction of range size revealed many cases of disparate range sizes among sister species. Such range size disparity highlights potential vicariant processes through isolation in peripheral locations. When accounting for peripheral speciation processes in sister pairs, we found a significant relationship between labrid range size and lineage age. The diversity and evolution of traits within lineages is influenced by trait–environment interactions as well as by species and trait–trait interactions, where the presence of a given trait may trigger the development of related traits or behaviours. Our effort to assess the evolution of functional diversity across reef fish clades adds to the burgeoning research focusing on the evolutionary and ecological roles of functional traits. We argue that the combination of a phylogenetic and a functional approach will improve the understanding of the mechanisms of species assembly in extraordinarily rich coral reef communities.  相似文献   

13.
Phenotypic adaptations can allow organisms to relax abiotic selection and facilitate their ecological success in challenging habitats, yet we have relatively little data for the prevalence of this phenomenon at macroecological scales. Using data on the relative abundance of coral reef wrasses and parrotfishes (f. Labridae) spread across three ocean basins and the Red Sea, we reveal the consistent global dominance of extreme wave‐swept habitats by fishes in the genus Thalassoma, with abundances up to 15 times higher than any other labrid. A key locomotor modification—a winged pectoral fin that facilitates efficient underwater flight in high‐flow environments—is likely to have underpinned this global success, as numerical dominance by Thalassoma was contingent upon the presence of high‐intensity wave energy. The ecological success of the most abundant species also varied with species richness and the presence of congeneric competitors. While several fish taxa have independently evolved winged pectoral fins, Thalassoma appears to have combined efficient high‐speed swimming (to relax abiotic selection) with trophic versatility (to maximize exploitation of rich resources) to exploit and dominate extreme coral reef habitats around the world.  相似文献   

14.
We investigated the functional morphology and ecology of biting among the squamipinnes, an assemblage of nine successful and distinctive reef fish families. We demonstrate that an intramandibular joint (IMJ) may have evolved at least three and possibly five times in this assemblage and discuss the impact of this recurring innovation in facilitating prey-capture by biting. Using character mapping on a supertree for the squamipinnes, we reveal up to seven gains or losses of intramandibular flexion, all associated with trophic transitions between free-living and attached prey utilization. IMJs are basal in six of the studied families whereas the origin of intramandibular flexion in the Chaetodontidae (butterflyfishes) coincides with a transition from ram-suction feeding to benthic coral feeding, with flexion magnitude reaching its peak (49 ± 2.7°) in the coral scraping subgenus Citharoedus . Although IMJs generally function to augment vertical gape expansion during biting behaviours to remove small invertebrates, algae or coral from the reef, the functional ecology of IMJs in the Pomacanthidae (angelfishes) stands in contrast. Pomacanthid IMJs exhibit over 35° of flexion, permitting gape closure when the jaws are fully protruded. We demonstrate the widespread IMJ occurrence among extant biters to result from a complex convergent evolutionary history, indicating that the IMJ is a major functional innovation that enhances biting strategies in several prominent reef fish groups.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 545–555.  相似文献   

15.
The evolution of feeding mechanisms in the ray-finned fishes(Actinopterygii) is a compelling example of transformation ina musculoskeletal complex involving multiple skeletal elementsand numerous muscles that power skull motion. Biomechanicalmodels of jaw force and skull kinetics aid our understandingof these complex systems and enable broad comparison of feedingmechanics across taxa. Mechanical models characterize how musclesmove skeletal elements by pulling bones around points of rotationin lever mechanisms, or by transmitting force through skeletalelements connected in a linkage. Previous work has focused onthe feeding biomechanics of several lineages of fishes, buta broader survey of skull function in the context of quantitativemodels has not been attempted. This study begins such a surveyby examining the diversity of mechanical design of the oraljaws in 35 species of ray-finned fishes with three main objectives:(1) analyze lower jaw lever models in a broad phylogenetic rangeof taxa, (2) identify the origin and evolutionary patterns ofchange in the linkage systems that power maxillary rotationand upper jaw protrusion, and (3) analyze patterns of changein feeding design in the context of actinopterygian phylogeny.The mandibular lever is present in virtually all actinopterygians,and the diversity in lower jaw closing force transmission capacity,with mechanical advantage ranging from 0.04 to 0.68, has importantfunctional consequences. A four-bar linkage for maxillary rotationarose in the Amiiformes and persists in various forms in manyteleost species. Novel mechanisms for upper jaw protrusion basedon this linkage for maxillary rotation have evolved independentlyat least five times in teleosts. The widespread anterior jawslinkage for jaw protrusion in percomorph fishes arose initiallyin Zeiformes and subsequently radiated into a wide range ofpremaxillary protrusion capabilities.  相似文献   

16.
We determined the species-specific habitat associations of coral reef fishes and environmental characteristics in an Okinawan coral reef in Japan. We focused on three families (Pomacentridae, Gobiidae and Labridae) and attempted to determine differences in habitat utilization. We selected six sites along the coast of Amitori Bay, from the entrance to the innermost part, in order to cover a wide range of habitat characteristics (exposed habitat, semi-exposed habitat and sheltered habitat). The species diversity of coral assemblages was greater at the exposed and semi-exposed habitats, whereas branching coral mostly covered the sheltered habitat. The environmental factors that determine the species-specific spatial association in fishes differed among families. Both biological characteristics (coral morphology and coral species diversity) and physical characteristics (water depth and wave exposure) affected the spatial association of pomacentrids and gobiids. In contrast, physical characteristics such as substrate complexity and water depth affected the species-specific spatial association of labrid species. Further study is needed to determine the ecological factors that regulate the species-specific habitat preference in Okinawan coral reefs.  相似文献   

17.
Among the acanthopterygian fishes, the Labridae possess the most highly integrated and specialized pharyngeal jaw apparatus. The integrated feature involves many osteological components and aspects of muscle form, architecture, composition, and function. The upper jaw articulates by means of a true diarthrosis with the pharyngeal process of the parasphenoid, whereas the lower jaw has established physical contact with the cleithrum. Complex muscle fusions have contributed significantly in the development of a double muscle sling operating the lower jaw. The original levator externus 4 fuses with the central head of the obliquus posterior, whereas the original levator posterior combines with the lateral head of the obliquus posterior as well as with the adductor branchialis 5. During the masticatory cycle, both upper and lower jaws undergo complex movement orbits resulting in shearing and crushing functions. Shearing occurs as the forward moving upper jaw collides with the dorsally held lower jaw. Crushing is effected by an extreme posterodorsal movement of the lower jaw against the retracted upper jaw, thereby establishing full occlusion of the teeth. The specialized morphological and functional design of the labrid pharyngeal jaw apparatus is similar to that found in cichlids. In sharp contrast to primitive acanthopterygian fishes, the Labridae and Cichlidae exhibit a spectacular morphological diversity that parallels their ecological diversification. Our combined functional and historical analysis has established a correlation between the complex integration of the pharyngeal jaw apparatus and morphological and ecological diversity in the Labridae and Cichlidae.  相似文献   

18.

Background

In order to understand feeding ecology and habitat use of coral reef fish, fatty acid composition was examined in five coral reef fishes, Thalassoma lunare, Lutjanus lutjanus, Abudefduf bengalensis, Scarus rivulatus and Scolopsis affinis collected in the Bidong Island of Malaysian South China Sea.

Results

Proportions of saturated fatty acids (SAFA) ranged 57.2% 74.2%, with the highest proportions in fatty acids, the second highest was monounsaturated fatty acids (MUFA) ranged from 21.4% to 39.0% and the proportion of polyunsaturated fatty acids (PUFA) was the lowest ranged from 2.8% to 14.1%. Each fatty acid composition differed among fishes, suggesting diverse feeding ecology, habitat use and migration during the fishes’ life history in the coral reef habitats.

Conclusions

Diets of the coral fish species might vary among species in spite of that each species are living sympatrically. Differences in fatty acid profiles might not just be considered with respect to the diets, but might be based on the habitat and migration.  相似文献   

19.
Synopsis Research in all fields of biology increasingly uses phylogenetic systematics to interpret biological data in an evolutionary context. It is becoming widely accepted that comparative studies of the correlation of biological features, such as ecomorphological studies, must frame their analyses within the context of a phylogenetic hierarchy rather than treating each taxonomic unit as an independent replicate. Recent methods for the interpretation of ecological and functional data in the framework of a phylogeny can reveal the degree to which ecomorphological characters are correlated with one another, and are congruent with hierarchical cladistic groups. An example of the ecomorphology of labrid fishes is used here to illustrate the application of several of these methods. The structural design and mechanics of the jaws of labrids are tested for ecomorphological associations with the natural diets of these fishes. Methods for analysis of the correlated evolution of both discrete and continuous quantitative characters within a phylogeny are practiced on a single ecomorphological data set. Techniques used include character coding, character mapping, phylogenetic autocorrelation, independent contrasts, and squared change parsimony. These approaches to diverse biological data allow the study of ecomorphology to account for patterns of phylogenetic ancestry. Biomechanics or functional morphology also plays a vital role in the determination of ecomorphological relationships by clarifying the mechanisms by which morphologies can perform behaviors important to the organism's ecology. The synthesis of systematics with biomechanics is an example of interdisciplinary study in which information exchange can elucidate patterns of evolution in ecomorphology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号