首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Total fatty acids in plasma of neonates have been analysed as their methyl esters by gas chromatography. They were separated on a capillary column coated with a SP-2380 stationary phase. As little as 100 μl of plasma is used for the analysis. The extraction procedure was performed with dichloromethane—methanol (2:1) and fatty acids were methylated with boron trifluoride—methanol. The quantification of fatty acids is based on an internal standard method. Absolute values (μg fatty acid per 100 μl plasma) are given together with relative values (%). At a signal-to-noise ratio of 3, the detection limits for flame ionisation detection are between 0.08 to 0.51 ng. The high sensitivity and precision permits the effective determination of the fatty acids in neonate plasma.  相似文献   

2.
Non-esterified fatty acids (NEFA) can significantly interfere with the radioimmunoassay of PGE and PGF using commercially available anti-sera. PGB1 antigen-antibody binding is 50% inhibited by 110 pg of PGB1, 48 ng of PGE1, 3.5 μg of PGF, or 9.0 μg linoleic, 14 μg arachidonic, 22 μg δ-linoleic, 40 μg palmitoleic or 45 μg oleic acids. PGF antigen-antibody binding is 50% inhibited by 270 pg of PGF, 70 ng of PGE1, or 4.2 μg arachidonic, 14 μg δ-linolenic, 22 μg linoleic, 70 μg palmitoleic or 110 μg oleic acids. Physiological levels of NEFA, such as the quantities found in small volumes of plasma, are sufficient to prohibit accurate prostaglandin measurements. Chromatography on small columns of silicic acid proved to be an effective technique for separation of NEFA and prostaglandin from lipid extracts, however, the results of this study suggest that the interference produced by the presence of NEFA in the measurement of prostaglandin from certain physiological fluids may be avoided if the prostaglandins are not extracted prior to radioimmunoassay.  相似文献   

3.
A rapid and sensitive method for the assay of zonisamide in serum was developed using a solid-phase extraction technique followed by high-performance liquid chromatography. A 20-μl volume of human serum was first purified with a Bond-Elut cartridge column. Then, the methanol eluate was injected onto a reversed-phase HPLC column with a UV detector. The mobile phase was acetonitrile—methanol—distilled water (17:20:63, v/v) and the detection wavelength was 246 nm. The detection limit was 0.1 μg/ml in serum. The coefficients of variation were 4.2–5.6% and 5.1–9.1% for the within-day and between-day assays, respectively. This method can be used for clinical pharmacokinetic studies of zonisamide in serum even in infant patients with epilepsy.  相似文献   

4.
An isocratic HPLC method was developed and validated for the quantitation of methocarbamol in human plasma. Methocarbamol and internal standard in 200 μl of human plasma were extracted with ethyl acetate, evaporated to dryness and reconstituted in water. Separation was achieved on a reversed-phase C18 column with a mobile phase of methanol—0.1 M potassium phosphate monobasic—water (35:10:55, v/v/v). The detection was by ultraviolet at 272 nm. Linearity was established at 1–100 μg/ml (r > 0.999). The limit of quantitation was designed as 1 μg/ml to suit pharmacokinetic studies. Inter-day precision and accuracy of the calibration standards were 1.0 to 3.6% coefficients of variance (C.V.) and −2.0 to +1.6% relative error (R.E.). Quality controls of 3, 20 and 70 μg/ml showed inter-day precision and accuracy of 2.5 to 3.6% C.V. and −0.9 to −0.4% R.E. Recovery of methocarbamol was 91.4–100.3% in five different lots of plasma. The method was shown to be applicable on different brands of C18 columns.  相似文献   

5.
A simple, selective, and sensitive liquid chromatographic method with ultraviolet detection was developed for the analysis of penicillin G in bovine plasma. The assay utilizes a simple extraction of penicillin G from plasma (with a known amount of penicillin V added as internal standard) with water, dilute sulphuric acid and sodium tungstate solutions, followed by concentration on a conditioned C18 solid-phase extraction column. After elution with 500 μl of elution solution, the penicillins are derivatized with 500 μl of 1,2,4-triazole—mercuric chloride solution at 65°C for 30 min. The penicillin—mercury mercaptide complexes are separated by reversed-phase liquid chromatography on a C18 column. The method, which has a detection limit of 5 ng/ml (ppb) in bovine plasma, was used to quantitatively measure the concentrations of penicillin G in plasma of steers at a series of intervals after the intramuscular administration of a commercial formulation of procaine penicillin G.  相似文献   

6.
A rapid and quantitative analytical micro method for the determination of diazepam and its major pharmacologically active metabolites utilizing high-performance liquid chromatography (HPLC) is reported. The drug and its metabolites were extracted from 50–100 μl samples of whole blood, serum or plasma using Bond Elut™ C15f column and quantitated by high-performance liquid chromatography, using Technicon Fast-LC-C-8 (RP 5 μm) bonded column and a mobile phase consisting of 53% methanol, 1% acetonitrile in KH2PO4 buffer and 10 μl/l triethylamine. Methyl nitrazepam and medazepam were used as internal and external standards, respectively. The extraction and recovery of diazepam and its major pharmacologically active metabolites, i.e., 3-hydroxydiazepam, desmethyldiazepam and oxazepam from blood were higher than 88% for all compounds. The minimum detection range of each compound was approximately 2.5 ng per 100-μl sample. This micro method of simultaneous quantitation of diazepam and its major pharmacologically active metabolites provides a valuable technique for the study of diazepam pharmacokinetics in a small animal model without disturbance of normal hemodynamics from excess blood loss, as well as in clinical evaluation of pediatric patients.  相似文献   

7.
We extended the application of a sensitive high-performance liquid chromatography assay of amoxicillin developed in this laboratory for human plasma and middle ear fluid (MEF) to other sample matrices including chinchilla plasma or MEF and human and chinchilla whole blood with minor modification and validated the limit of quantitation at 0.25 μg/ml with a 50-μl sample size for human and chinchilla plasmas or MEFs. Amoxicillin and cefadroxil, the internal standard, were extracted from 50 μl of the samples with Bond Elut C18 cartridges. The extract was analyzed on a Keystone MOS Hypersil-1 (C8) column with UV detection at 210 nm. The mobile phase was 6% acetonitrile in 5 mM phosphate buffer, pH 6.5 and 5 mM tetrabutylammonium. The within-day coefficients of variation were 2.7–9.9 (n=4) and 1.7–7.2% (n=3) for chinchilla plasma and MEF samples, respectively; 2.8–8.1% (n=3) and 2.9–4.7% (n=3) for human and chinchilla whole blood, respectively. An alternative mobile phase composition for chinchilla plasma and MEF samples reduced the analysis time significantly.  相似文献   

8.
A method is described for the analysis of amino acids, monoamines and metabolites by high-performance liquid chromatography with electrochemical detection (HPLC–ED) from individual brain areas. The chromatographic separations were achieved using microbore columns. For amino acids we used a 100×1 mm I.D. C8, 5 μm column. A binary mobile phases was used: mobile phase A consisted of 0.1 M sodium acetate buffer (pH 6.8)–methanol–dimethylacetamide (69:24:7, v/v) and mobile phase B consisted of sodium acetate buffer (pH 6.8)–methanol–dimethylacetamide (15:45:40, v/v). The flow-rate was maintained at 150 μl/min. For monoamines and metabolites we used a 150×1 mm I.D. C18 5 μm reversed-phase column. The mobile phase consisted of 25 mM monobasic sodium phosphate, 50 mM sodium citrate, 27 μM disodium EDTA, 10 mM diethylamine, 2.2 mM octane sulfonic acid and 10 mM sodium chloride with 3% methanol and 2.2% dimethylacetamide. The potential was +700 mV versus Ag/AgCl reference electrode for both the amino acids and the biogenic amines and metabolites. Ten rat brain regions, including various cortical areas, the cerebellum, hippocampus, substantia nigra, red nucleus and locus coeruleus were microdissected or micropunched from frozen 300-μm tissue slices. Tissue samples were homogenized in 50 or 100 μl of 0.05 M perchloric acid. The precise handling and processing of the tissue samples and tissue homogenates are described in detail, since care must be exercised in processing such small volumes while preventing sample degradation. An aliquot of the sample was derivatized to form the tert.-butylthiol derivatives of the amino acids and γ-aminobutyric acid. A second aliquot of the same sample was used for monamine and metabolite analyses. The results indicate that the procedure is ideal for processing and analyzing small tissue samples.  相似文献   

9.
A high-performance liquid chromatographic method has been developed for the simultaneous determination of mycophenolic acid (MPA) and its glucuronide conjugate (MPAG) in human plasma. The method involves protein precipitation with acetonitrile, followed by ion-pair reversed-phase chromatography on C18 column, with a 40 mM tetrabutyl ammonium bromide (TBA)–acetonitrile (65:35, v/v) mobile phase. A 20-μl volume of clear supernatant was injected after centrifugation, and the eluent was monitored at 304 nm. No interference was found either with endogenous substances or with many concurrently used drugs, indicating a good selectivity for the procedure. Calibration curves were linear over a concentration range of 0.5–20.0 μg/ml for MPA and 5–200 μg/ml for MPAG. The accuracy of the method is good, that is, the relative error is below 5%. The intra- and inter-day reproducibility of the analytical method is adequate with relative statistical deviations of 6% or below. The limits of quantification for MPA and MPAG were lower than 0.5 and 5.0 μg/ml, respectively, using 50 μl of plasma. The method was used to determine the pharmacokinetic parameters of MPA and MPAG following oral administration in a patient with renal transplantation.  相似文献   

10.
Bioanalytical methods for the determination of estramustine phosphate by liquid chromatography and its four main metabolites estromustine, estramustine, estrone and estradiol by gas chromatography are described. For the estramustine phosphate assay the plasma was purified by protein precipitation followed by a C18 solid-phase extraction. For the metabolite assay the plasma samples were purified by a C18 solid-phase and liquid–liquid extraction procedure and derivatised by silanization. Thereafter, estramustine and estromustine were quantified by gas chromatography with nitrogen-phosphorus detection and estradiol and estrone were quantified by gas chromatography with selected ion monitoring. The methods were validated with respect to linearity, selectivity, precision, accuracy, limit of quantitation, limit of detection, recovery and stability. The limit of quantitation was 2.3 μmol/l for estramustine phosphate, 30 nmol/l for estromustine and estramustine, 12 nmol/l for estrone and 8 nmol/l for estradiol. The results showed good precision and accuracy for estramustine phosphate and the four metabolites. The intermediate precision was 6.2–13.5% (C.V.) and the accuracy was 91.8–103.9%.  相似文献   

11.
A simple and highly sensitive high-performance liquid chromatographic method for the direct determination of urinary glucuronide conjugates is described. The method is based on the direct derivatization of the glucuronic acid moiety in glucuronide conjugates with 6,7-dimethoxy-1-methyl-2 (1 H)-quinoxalinone-3-propionylcarboxylic acid hydrazide. The derivatization reaction proceeds in aqueous solution in the presence of pyridine and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at 0–37°C. The resulting fluorescent derivatives are separated on a C18 column using methanol—acetonitrile—0.5% triethylamine in water (1:1:2, v/v) as mobile phase, and are detected spectrofluorimetrically at 445 nm with excitation at 367 nm. The detection limits (signal-to-noise RATIO = 3) for the glucuronides are 13–48 fmol for an injection volume of 10 μl (130–480 fmol per 5 μl of human urine). The method was applied to the measurement of etiocholanorone-3-glucuronide and androsterone-3-glucuronide in human urine. The method is simple and rapid without conventional liquid—liquid extraction of the glucuronides from urine.  相似文献   

12.
Plasma fatty acids from renal and hepatic veins, and arterialized hand vein obtained in 20 subjects before and after insulin infusion were separated by reversed-phase high-performance liquid chromatography following phenacyl esterification. Separation and quantification over the range 1.0–100 nmol per injection of nine fatty acids was achieved within 60 min using [2H31]palmitic acid as internal standard. Analytical recoveries were greater than 90% and the intra- and inter-assay coefficients of variation were less than 2.5 and 4.0%, respectively. Following insulin infusion, net splanchnic uptake of total fatty acids decreased from 3.0±0.3 to 1.0±0.1 μmol/kg min (p<0.01), whereas net renal balance remained neutral (−0.04±0.04 vs. −0.06±0.03 μmol/kg min, p=N.S.). Individual fatty acid balance varied from a low of 0.012±0.005 (myristic acid) to a high of 0.95±0.08 (oleic acid) μmol/kg min across the splanchnic tissues and from 0.005±0.002 (stearic acid) to 0.21±0.1 (oleic acid) μmol/kg min across the kidney. There is a substantial diversity in changes in plasma concentration and regional balance of individual fatty acid during short-term fasting and hyperinsulinemia. This method is simple, accurate, and can be applied to assess individual fatty acid metabolism in vivo.  相似文献   

13.
As a part of a pilot clinical study, a high-performance reversed-phase liquid chromatography analysis was developed to quantify temozolomide in plasma and urine of patients undergoing a chemotherapy cycle with temozolomide. All samples were immediately stabilized with 1 M HCl (1 + 10 of biological sample), frozen and stored at −20°C prior to analysis. The clean-up procedure involved a solid-phase extraction (SPE) of clinical sample (100 μl) on a 100-mg C18-endcapped cartridge. Matrix components were eliminated with 750 μl of 0.5% acetic acid (AcOH). Temozolomide was subsequently eluted with 1250 μl of methanol (MeOH). The resulting eluate was evaporated under nitrogen at RT and reconstituted in 200 μl of 0.5% AcOH and subjected to HPLC analysis on an ODS-column (MeOH-0.5% AcOH, 10:90) with UV detection at 330 nm. The calibration curves were linear over the concentration range 0.4–20 μg/ml and 2–150 μg/ml for plasma and urine, respectively. THe extraction recovery of temozolomide was 86–90% from plasma and 103–105% from urine over the range of concentrations considered. The stability of temozolomide was studied in vitro in buffered solutions at RT, and in plasma and urine at 37°C. An acidic pH (<5–6) shoul be maintained throughout the collection, the processing and the analysis of the sample to preserve the integrity of the drug. The method reported here was validated for use in a clinical study of temozolomide for the treatment of metastatic melanoma and high grade glioma.  相似文献   

14.
The simultaneous analysis of main antileprosy drugs such as 4,4′-diaminodiphenyl sulfone (DDS), clofazimine, rifampicin and their main metabolites in serum was examined by high-performance liquid chromatography using a μBondapak C1a column. When the drugs dissoluted from serum were developed by tetrahydrofuran—0.5% acetic acid (40:60), clofazimine and rifampicins could be analyzed separately. Apart from the mutual separation of water-soluble conjugates of DDS, the individual analysis of DDS, its main liposoluble metabolite and a few related sulfone compounds is possible when the drugs are first developed by acetonitrile—water (20:80). By the use of tetrahydrofuran—water (50:50) containing PIC B-5, the rapid measurement of clofazimine isolated from the other compounds is also possible.  相似文献   

15.
A method for the simultaneous determination of the three selective serotonin reuptake inhibitors (SSRIs) citalopram, fluoxetine, paroxetine and their metabolites in whole blood and plasma was developed. Sample clean-up and separation were achieved using a solid-phase extraction method with C8 non-endcapped columns followed by reversed-phase high-performance liquid chromatography with fluorescence and ultraviolet detection. The robustness of the solid-phase extraction method was tested for citalopram, fluoxetine, paroxetine, Cl-citalopram and the internal standard, protriptyline, using a fractional factorial design with nine factors at two levels. The fractional factorial design showed two significant effects for paroxetine in whole blood. The robustness testing for citalopram, fluoxetine, Cl-citalopram and the internal standard revealed no significant main effects in whole blood and plasma. The optimization and the robustness of the high-performance liquid chromatographic separation were investigated with regard to pH and relative amount of acetonitrile in the mobile phase by a central composite design circumscribed. No alteration in the elution order and no significant change in resolution for a deviation of ±1% acetonitrile and ±0.3 pH units from the specified conditions were observed. The method was validated for the concentration range 0.050–5.0 μmol/l with fluorescence detection and 0.12–5.0 μmol/l with ultraviolet detection. The limits of quantitation were 0.025 μmol/l for citalopram and paroxetine, 0.050 μmol/l for desmethyl citalopram, di-desmethyl citalopram and citalopram-N-oxide, 0.12 μmol/l for the paroxetine metabolites by fluorescence detection, and 0.10 μmol/l for fluoxetine and norfluoxetine by ultraviolet detection. Relative standard deviations for the within-day and between-day precision were in the ranges 1.4–10.6% and 3.1–20.3%, respectively. Recoveries were in the 63–114% range for citalopram, fluoxetine and paroxetine, and in the 38–95% range for the metabolites. The method has been used for the analysis of whole blood and plasma samples from SSRI-exposed patients and forensic cases.  相似文献   

16.
Zusammenfassung Die physikalischen und chemischen Kennzahlen und Daten des durch Ätherextraktion gewonnenen Rohlipids von Beauveria tenella wurden bestimmt und spektrale Absorptionskurven aufgenommen.Die Methylester der Fettsäuren wurden gaschromatographisch analysiert. Die einzelnen Fettsäuren wurden identifiziert und ihr mengenmäßiger Anteil ermittelt.Etwa 90% der Fettsäuren haben eine Kettenlänge von 16–18 Kohlenstoffatomen. Nahezu 60% der Fettsäuren sind ungesättigt; der prozentuale Anteil dieser Säuren nimmt mit steigender Zahl der Doppelbindungen ab.Octadecensäure hatte mit 25,6% den größten Anteil an der Gesamtmenge.An seltenen Fettsäuren konnte unter anderem eine gesättigte C17- und C24-Fettsäure nachgewiesen und das Vorkommen einer gesättigten C19-und C21-Fettsäure wahrscheinlich gemacht werden.
Summary The physical and chemical constants and the spectral absorption curves of crude lipids of Beauveria tenella, obtained by means of etherextraction, were determined.The methyl esters of the fatty acids were analyzed using gas-liquid chromatography. The individual fatty acids were identified and the amount of each in the complete sample determined.Approximately 90% of the fatty acids had a 16–18 carbon-chain length, while almost 60% of the fatty acids were unsaturated. The percentage of fatty acids with unsaturated bonds was reciprocally proportional to the number of double bonds present.Octadecenoic acid comprised 25,6% of the total fatty acids and represented the largest single amount of a specific fatty acid present.With respect to unusual fatty acids, a saturated C17 and a C24 fatty acid were identified, while the presence of a C19 and a C21 fatty acid was indicated.
  相似文献   

17.
A simple and selective procedure for the determination of vinorelbine, a new semi-synthetic vinca alkaloid, is presented. The method is based on ion-exchange high-performance liquid chromatography on normal-phase silica with fluorescence detection, combined with liquid—liquid extraction using diethyl ether for sample clean-up. The absence of endogenous interferences and the excellent chromatographic behaviour of vinca alkaloids provides accurate results even at low concentrations. The limit of determination in plasma is 1.5 μg/l (500-μl sample). Reproducible recoveries in urine were obtained if 10–50 μl of sample were processed supplemented with 500 μl of blank plasma.  相似文献   

18.
A simultaneous assay for droperidol and flunitrazepam by high-performance liquid chromatography has been developed and applied to blood samples collected during an acute normovolemic haemodilution under general anaesthesia. Haemodilution blood samples were stored at +4°C to be transfused, if required, to a patient during the post-surgical phase. A C18 Supelclean cartridge was used for solid-phase extraction, and the recoveries were 74% and 89%, respectively, for droperidol and flunitrazepam. Compounds were chromatographed on a C18 Novapak column at 250 nm, with a mobile phase of acetonitrile—10 mM ammonium acetate buffer (pH 6.7) (45:55, v/v). Nitrazepam was used as the internal standard. For both drugs, the assay was linear up to 500 μg/l, and the detection limits were 20 and 10 μg/l for droperidol and flunitrazepam, respectively, and their observed levels in haemodilution samples were 93 ± 82 μg/l and 76 ± 107 μg/l, respectively. Some of the values for flunitrazepam were higher than the minimal efficient concentration, defined as the plasma level observed at the time of the patient wakening from anaesthesia (12 ± 4 μg/l). According to our results, haemodilution sampling can be performed before induction of anaesthesia. When the blood is collected after the anaesthetic induction, it seems necessary to determine levels of the two drugs in haemodilution samples to avoid side-effects.  相似文献   

19.
A study of the fatty acid composition was made for 35 Arthrospira strains, concentrating on the most abundant fatty acids, the two polyunsaturated C18 acids, linoleic and γ-linolenic acid, and palmitic acid. When grown at 30 C and low irradiance (10 μmol photon m−2 s−1), these three acids together formed 88–92% of total fatty acids. There were considerable differences in the composition of the two polyunsaturated acids. Depending on the strain, linoleic acid formed 13.1–31.5% and γ-linolenic acid formed 12.9–29.4% total fatty acids. In contrast, the range for palmitic acid was narrow: 42.3–47.6% of total fatty acids. Repeat experiments on several strains under defined conditions led to closely similar results for any particular environment, suggesting that fatty acid composition can be used as an aid in differentiating between strains. Five additional strains, which had apparently originated from the same original stock cultures as 3 of the 35 in the main study, but from different culture collections, were also assayed. With four strains the results were similar, irrespective of culture source, but with one strain marked differences occurred, especially in the polyunsaturated C18 fatty acid fraction. These differences were independent of the age of the culture. In addition, straight morphotypes derived during repeat subcultures of four strains; each showed a similar fatty acid composition to that of the helical morphotypes of the same strains. A decrease in temperature from 30 to 20 C, an increase in irradiance (at 30 C) from 10 to 70 μmol photon m−2 s−1 and transfer to dark heterotrophy all favoured an increase in polyunsaturated C18 fatty acids. The highest γ-linolenic acid content of any conditions was found for three strains grown heterotrophically on glucose in the dark at 30 C. A comparative study of six strains of Spirulina confirmed a previous study showing the absence of γ-linolenic acid in all Spirulina strains, thus permitting the separation of these two genera.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号