首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J A Pérez  S J Ferguson 《Biochemistry》1990,29(46):10503-10518
(1) The rate of ATP synthesis during NADH-driven aerobic respiration has been measured in plasma membrane vesicles from Paracoccus denitrificans as a function of the concentration of the substrates, ADP and inorganic phosphate (Pi). In both cases, the response of the reaction to changes in the degree of saturation of the F0F1-ATPase generated a perfect Micaelian dependence which allowed the determination of the corresponding Michaelis constants, KmADP and KmPi. (2) These kinetic parameters possess a real mechanistic significance, as concluded from the partial reduction of the rate of phosphorylation by the energy-transfer inhibitor venturicidin and the consequent analysis of the results within the framework of the theory of metabolic control. (3) The same membrane vesicles, which catalyze very high rates of ATP synthesis, have been shown to support much lower rates of the exchange ATP in equilibrium Pi and negligible rates of ATP hydrolysis. Under similar conditions, the preparations are also capable of generating phosphorylation potentials, delta Gp, of 60-61 kJ.mol-1. (4) These properties have allowed analysis of the synthetic reaction in the presence of significant concentrations of the product, ATP, using integrated forms of the Michaelis-Menten rate equations. (5) It has been shown that ATP produces pure competitive product inhibition of the forward reaction with a value of KiATP = 16 +/- 1 microM, thus indicating that the affinity of the nucleotide for the active site(s) of the F0F1-ATPase, during net ATP synthesis, is significantly higher than previously thought. (6) The order of binding of the substrates, ADP and Pi, to the active site(s) has been determined as random. (7) At very low concentrations of ADP, a second and much smaller Michaelis constant for this substrate has been identified, with an estimated value of KmADP approximately equal to 50 nM, associated with a maximal rate of only 2% of that measured at a higher range of concentrations. (8) The results obtained are discussed in relation to the presence of two or three equivalent catalytic sites operating in the cooperative manner explicitly described by the binding change mechanism.  相似文献   

2.
Bloodstream forms of Trypanosoma brucei were found to maintain a significant membrane potential across their mitochondrial inner membrane (delta psi m) in addition to a plasma membrane potential (delta psi p). Significantly, the delta psi m was selectively abolished by low concentrations of specific inhibitors of the F1F0-ATPase, such as oligomycin, whereas inhibition of mitochondrial respiration with salicylhydroxamic acid was without effect. Thus, the mitochondrial membrane potential is generated and maintained exclusively by the electrogenic translocation of H+, catalysed by the mitochondrial F1F0-ATPase at the expense of ATP rather than by the mitochondrial electron-transport chain present in T. brucei. Consequently, bloodstream forms of T. brucei cannot engage in oxidative phosphorylation. The mitochondrial membrane potential generated by the mitochondrial F1F0-ATPase in intact trypanosomes was calculated after solving the two-compartment problem for the uptake of the lipophilic cation, methyltriphenylphosphonium (MePh3P+) and was shown to have a value of approximately 150 mV. When the value for the delta psi m is combined with that for the mitochondrial pH gradient (Nolan and Voorheis, 1990), the mitochondrial proton-motive force was calculated to be greater than 190 mV. It seems likely that this mitochondrial proton-motive force serves a role in the directional transport of ions and metabolites across the promitochondrial inner membrane during the bloodstream stage of the life cycle, as well as promoting the import of nuclear-encoded protein into the promitochondrion during the transformation of bloodstream forms into the next stage of the life cycle of T. brucei.  相似文献   

3.
The epsilon subunit of Escherichia coli F1-ATPase is a tightly bound but dissociable partial inhibitor of ATPase activity. The effects of epsilon on the enzyme were investigated by comparing the ATPase activity and aurovertin binding properties of the epsilon-depleted F1-ATPase and the epsilon-replete complex. Kinetic data of multisite ATP hydrolysis were analyzed to give the best fit for one, two, or three kinetic components. Each form of F1-ATPase contained a high-affinity component, with a Km near 20 microM and a velocity of approximately 1 unit/mg. Each also exhibited a component with a Km in the range of 0.2 mM. The velocity of this component was 25 units/mg for epsilon-depleted ATPase but only 4 units/mg for epsilon-replete enzyme. The epsilon-depleted enzyme also contained a very low affinity component not present in the epsilon-replete enzyme. In unisite hydrolysis studies, epsilon had no effect on the equilibrium between substrate ATP and product ADP.P1 at the active site but reduced the rate of product release 15-fold. These results suggest that epsilon subunit slows a conformational change that is required to reduce the affinity at the active site, allowing dissociation of product. It is suggested that inhibition of multisite hydrolysis by epsilon is also due to a reduced rate of product release. epsilon-depleted F1-ATPase showed little of no modulation of aurovertin fluorescence by added ADP and ATP. Aurovertin fluorescence titrations in buffer containing ethylenediaminetetraacetic acid (EDTA) revealed that epsilon-depleted enzyme had high affinity for aurovertin (Kd less than 0.1 microM) regardless of the presence of nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The mechanism of inhibition of yeast F(0)F(1)-ATPase by its naturally occurring protein inhibitor (IF1) was investigated in submitochondrial particles by studying the IF1-mediated ATPase inhibition in the presence and absence of a protonmotive force. In the presence of protonmotive force, IF1 added during net NTP hydrolysis almost completely inhibited NTPase activity. At moderate IF1 concentration, subsequent uncoupler addition unexpectedly caused a burst of NTP hydrolysis. We propose that the protonmotive force induces the conversion of IF1-inhibited F(0)F(1)-ATPase into a new form having a lower affinity for IF1. This form remains inactive for ATP hydrolysis after IF1 release. Uncoupling simultaneously releases ATP hydrolysis and converts the latent form of IF1-free F(0)F(1)-ATPase back to the active form. The relationship between the different steps of the catalytic cycle, the mechanism of inhibition by IF1 and the interconversion process is discussed.  相似文献   

5.
J C Wu  J Lin  H Chuan  J H Wang 《Biochemistry》1989,28(22):8905-8911
The affinity reagents 3'-O-(5-fluoro-2,4-dinitrophenyl) [alpha-32P]ATP (FDNP-[alpha-32P]ATP) and 3'-O-(5-fluoro-2,4-dinitrophenyl) [8-14C]ATP (FDNP-[14C]ATP) were synthesized and used to characterize the structure and function of the three active sites in F1-ATPase. FDNP-[alpha-32P]ATP was found to bind covalently to F1 up to two DNP-[alpha-32P]ATP labels per F1 in the absence of Mg2+ without decreasing the ATPase activity. However, when MgCl2 was subsequently added to the reaction mixture, the enzyme could be further labeled with concomitant decrease in ATPase activity that is consistent with the complete inactivation of one enzyme molecule by an affinity label at the third ATP-binding site. Partial hydrolysis of the FDNP-[14C]ATP-labeled enzyme and sequencing of the isolated peptide indicated that the affinity label was attached to Lys-beta 301 at all three active sites. Samples of F1 with covalent affinity label on Lys-beta 301 were also used to reconstitute F1-deficient submitochondrial particles. The reconstituted particles were assayed for ATPase and oxidative phosphorylation activities. These results show that the catalytic hydrolysis of ATP either by F1 in solution or by F0F1 complex attached to inner mitochondrial membrane takes place essentially at only one active site, but is promoted by the binding of ATP at the other two active sites, and that ATP synthesis during oxidative phosphorylation takes place at all three active sites [corrected].  相似文献   

6.
The physiological role of F(1)F(0)-ATPase inhibition in ischemia may be to retard ATP depletion although views of the significance of IF(1) are at variance. We corroborate here a method for measuring the ex vivo activity of F(1)F(0)-ATPase in perfused rat heart and show that observation of ischemic F(1)F(0)-ATPase inhibition in rat heart is critically dependent on the sample preparation and assay conditions, and that the methods can be applied to assay the ischemic and reperfused human heart during coronary by-pass surgery. A 5-min period of ischemia inhibited F(1)F(0)-ATPase by 20% in both rat and human myocardium. After a 15-min reperfusion a subsequent 5-min period of ischemia doubled the inhibition in the rat heart but this potentiation was lost after 120 min of reperfusion. Experiments with isolated rat heart mitochondria showed that ATP hydrolysis is required for effective inhibition by uncoupling. The concentration of oligomycin for 50% inhibition (I(50)) for oxygen consumption was five times higher than its I(50) for F(1)F(0)-ATPase. Because of the different control strengths of F(1)F(0)-ATPase in oxidative phosphorylation and ATP hydrolysis an inhibition of the F(1)F(0)-ATPase activity in ischemia with the resultant ATP-sparing has an advantage even in an ischemia/reperfusion situation.  相似文献   

7.
Since the report by Sternweis and Smith (Sternweis, P. C., and Smith, J. B. (1980) Biochemistry 19, 526-531), the epsilon subunit, an endogenous inhibitor of bacterial F(1)-ATPase, has long been thought not to inhibit activity of the holo-enzyme, F(0)F(1)-ATPase. However, we report here that the epsilon subunit is exerting inhibition in F(0)F(1)-ATPase. We prepared a C-terminal half-truncated epsilon subunit (epsilon(DeltaC)) of the thermophilic Bacillus PS3 F(0)F(1)-ATPase and reconstituted F(1)- and F(0)F(1)-ATPase containing epsilon(DeltaC). Compared with F(1)- and F(0)F(1)-ATPase containing intact epsilon, those containing epsilon(DeltaC) showed uninhibited activity; severalfold higher rate of ATP hydrolysis at low ATP concentration and the start of ATP hydrolysis without an initial lag at high ATP concentration. The F(0)F(1)-ATPase containing epsilon(DeltaC) was capable of ATP-driven H(+) pumping. The time-course of pumping at low ATP concentration was faster than that by the F(0)F(1)-ATPase containing intact epsilon. Thus, the comparison with noninhibitory epsilon(DeltaC) mutant shed light on the inhibitory role of the intact epsilon subunit in F(0)F(1)-ATPase.  相似文献   

8.
The F0F1-ATPase of the inner mitochondrial membrane catalyzes the conversion of a proton electrochemical energy into the chemical bond energy of ATP (Boyer, P.D., Chance, B., Ernster, L., Mitchell, P., Racker, E., and Slater, E.C. (1977) Annu. Rev. Biochem. 46, 955-1026). To assess the role of the membrane potential (delta psi) in this process and to study the effect of very short pulses on ATP synthesis, we employed a high voltage pulsation method (Kinosita, K., and Tsong, T.Y. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 1923-1927) to induce a delta psi of controlled magnitude and duration in a suspension of submitochondrial particles and F0F1-ATPase vesicles. Cyanide-treated submitochondrial particles were exposed to electric pulses of 10-30 kV/cm of magnitude (generating a peak delta psi of 150-450 mV) and 1-100 microseconds duration. Net [32P]ATP synthesis from [32P]Pi and ADP was observed with maximal values of 410 pmol/mg X pulse for a 30 kV/cm-100-microseconds pulse. This corresponds to a yield of 10-12 mol of ATP per mol of F0F1 complex per pulse. As many as 4 nmol/mg were produced after pulsing the same sample 8 times. By varying the ionic strength of the suspending medium, and consequently the pulse width, it is clearly shown that the synthesis was electrically driven and did not correlate with Joule heating of the sample. Titrations using specific inhibitors and ionophores were performed. The voltage-induced ATP synthesis was 50% inhibited by 0.11 microgram/mg of oligomycin and 2.4 nmol/mg of N,N'-dicyclohexylcarbodiimide. Ionophores and uncouplers had varying degrees of inhibition. The dependence of ATP synthesis on pulse width was nonlinear, exhibiting a threshold at 10 microseconds and a biphasic behavior above this value. Isolated F0F1-ATPase reconstituted into asolectin vesicles also synthesized ATP when pulsed with electric fields. A 35 kV/cm pulse induced the synthesis of 115 pmol of ATP per mg of protein, which corresponds to approximately 0.34 mol of ATP per mol of F0F1-ATPase. This synthesis was also sensitive to oligomycin and dicyclohexylcarbodiimide. The possibility of turnover of the ATPase in microseconds is considered.  相似文献   

9.
Mitochondrial membrane potential (delta psi(m)) was determined in intact isolated nerve terminals using the membrane potential-sensitive probe JC-1. Oxidative stress induced by H2O2 (0.1-1 mM) caused only a minor decrease in delta psi(m). When complex I of the respiratory chain was inhibited by rotenone (2 microM), delta psi(m) was unaltered, but on subsequent addition of H2O2, delta psi(m) started to decrease and collapsed during incubation with 0.5 mM H2O2 for 12 min. The ATP level and [ATP]/[ADP] ratio were greatly reduced in the simultaneous presence of rotenone and H2O2. H2O2 also induced a marked reduction in delta psi(m) when added after oligomycin (10 microM), an inhibitor of F0F1-ATPase. H2O2 (0.1 or 0.5 mM) inhibited alpha-ketoglutarate dehydrogenase and decreased the steady-state NAD(P)H level in nerve terminals. It is concluded that there are at least two factors that determine delta psi(m) in the presence of H2O2: (a) The NADH level reduced owing to inhibition of alpha-ketoglutarate dehydrogenase is insufficient to ensure an optimal rate of respiration, which is reflected in a fall of delta psi(m) when the F0F1-ATPase is not functional. (b) The greatly reduced ATP level in the presence of rotenone and H2O2 prevents maintenance of delta psi(m) by F0F1-ATPase. The results indicate that to maintain delta psi(m) in the nerve terminal during H2O2-induced oxidative stress, both complex I and F0F1-ATPase must be functional. Collapse of delta psi(m) could be a critical event in neuronal injury in ischemia or Parkinson's disease when H2O2 is generated in excess and complex I of the respiratory chain is simultaneously impaired.  相似文献   

10.
The amino acid sequence -Gly-X-X-X-X-Gly-Lys- occurs in many, diverse, nucleotide-binding proteins, and there is evidence that it forms a flexible loop which interacts with one or other of the phosphate groups of bound nucleotide. This sequence occurs as -Gly-Gly-Ala-Gly-Val-Gly-Lys- in the beta-subunit of the enzyme F1-ATPase, where it is thought to form part of the catalytic nucleotide-binding domain. Mutants of Escherichia coli were generated in which residue beta-lysine 155, at the end of the above sequence, was replaced by glutamine or glutamate. Properties of the soluble purified F1-ATPase from each mutant were studied. The results showed: 1) replacement of lysine 155 by Gln or Glu decreased the steady-state rate of ATP hydrolysis by 80 and 66%, respectively. 2) Characteristics of ATP hydrolysis at a single site were not markedly changed in the mutant enzymes, implying that lysine 155 is not directly involved in bond cleavage during ATP hydrolysis or bond formation during ATP synthesis. 3) The binding affinity for MgATP was weakened considerably in the mutants (Lys much much greater than Gln greater than Glu), whereas the binding affinity for MgADP was affected only mildly (Lys = Gln greater than Glu), suggesting that lysine 155 interacts with the gamma-phosphate of ATP bound at a single high affinity catalytic site. 4) The major determinant of inhibition of steady-state ATPase turnover rate in the mutant enzymes was an attenuation of positive catalytic cooperativity. 5) The data are consistent with the idea that during multisite catalysis residue 155 of beta-subunit undergoes conformational movement which changes substrate and product binding affinities.  相似文献   

11.
E. coli F1-ATPase: site-directed mutagenesis of the beta-subunit   总被引:3,自引:0,他引:3  
Residues beta Glu-181 and beta Glu-192 of E. coli F1-ATPase (the DCCD-reactive residues) were mutated to Gln. Purified beta Gln-181 F1 showed 7-fold impairment of 'unisite' Pi formation from ATP and a large decrease in affinity for ATP. Thus the beta-181 carboxyl group in normal F1 significantly contributes to catalytic site properties. Also, positive catalytic site cooperativity was attenuated from 5 X 10(4)- to 548-fold in beta Gln-181 F1. In contrast, purified beta Gln-192 F1 showed only 6-fold reduction in 'multisite' ATPase activity. Residues beta Gly-149 and beta Gly-154 were mutated to Ile singly and in combination. These mutations, affecting residues which are strongly conserved in nucleotide-binding proteins, were chosen to hinder conformational motion in a putative 'flexible loop' in beta-subunit. Impairment of purified F1-ATPase ranged from 5 to 61%, with the double mutant F1 less impaired than either single mutant. F1 preparations containing beta Ile-154 showed 2-fold activation after release from membranes, suggesting association with F0 restrained turnover on F1 in these mutants.  相似文献   

12.
Functionally distinct beta subunits in F1-adenosinetriphosphatase   总被引:1,自引:0,他引:1  
A method has been developed for the effective inactivation of bovine heart mitochondrial F1-ATPase (MF1) by partially dissociating its subunits with 3 M LiCl at 0 degree C and for the subsequent partial restoration of its ATPase activity by making the subunits reassociate upon the removal of LiCl by centrifugal gel filtration at room temperature through Sephadex G-25-80 which has been pre-equilibrated with buffer containing 3 mM ATP. When covalently labeled MF1 with approximately one 7-[4-nitro-2,1,3-benzoxadiazole] label/MF1 was subjected to this type of partial dissociation-reassociation treatment, its ATPase activity could be increased from 1.48 to 18.0 mumol of ATP min-1 mg-1 without losing the covalent label. The experimental results are incompatible with models for F1-ATPase with either 3 or 2 equivalent alternating catalytic sites, but are consistent with the model with 1 active catalytic site and 2 interacting regulatory sites.  相似文献   

13.
The binding of one ADP molecule at the catalytic site of the nucleotide depleted F1-ATPase results in a decrease in the initial rate of ATP hydrolysis. The addition of an equimolar amount of ATP to the nucleotide depleted F1-ATPase leads to the same effect, but, in this case, inhibition is time dependent. The half-time of this process is about 30 s, and the inhibition is correlated with Pi dissociation from the F1-ATPase catalytic site (uni-site catalysis). The F1-ATPase-ADP complex formed under uni-site catalysis conditions can be reactivated in two ways: (i) slow ATP-dependent ADP release from the catalytic site (tau 1/2 20 s) or (ii) binding of Pi in addition to MgADP and the formation of the triple F1-ATPase-MgADP-Pi complex. GTP and GDP are also capable of binding to the catalytic site, however, without changes in the kinetic properties of the F1-ATPase. It is proposed that ATP-dependent dissociation of the F1-ATPase-GDP complex occurs more rapidly, than that of the F1-ATPase-ADP complex.  相似文献   

14.
Enterococcus hirae (formerly Streptococcus faecalis) ATCC 9790 has an F1F0-ATPase which functions as a regulator of the cytoplasmic pH but does not synthesize ATP. We isolated four clones which contained genes for c, b, delta, and alpha subunits of this enzyme but not for other subunit genes. It was revealed that two specific regions (upstream of the c-subunit gene and downstream of the gamma-subunit gene) were lost at a specific site in the clones we isolated, suggesting that these regions were unstable in Escherichia coli. The deleted regions were amplified by polymerase chain reaction, and the nucleotide sequences of these regions were determined. The results showed that eight genes for a, c, b, delta, alpha, gamma, beta, and epsilon subunits were present in this order. Northern (RNA) blot analysis showed that these eight genes were transcribed to one mRNA. The i gene was not found in the upper region of the a-subunit gene. Instead of the i gene, this operon contained a long untranslated region (240 bp) whose G + C content was only 30%. There was no typical promoter sequence such as was proposed for E. coli, suggesting that the promoter structure of this species is different from that of E. coli. Deduced amino acid sequences suggested that E. hirae H(+)-ATPase is a typical F1F0-type ATPase but that its gene structure is not identical to that of other bacterial F1F0-ATPases.  相似文献   

15.
A mathematical model is presented which includes the following elementary process of mitochondrial energy transduction: hydrogen supply, proton translocation by the respiratory chain, proton-driven ATP synthesis by the F0F1-ATPase, passive back-flow of protons (leak) and carrier-mediated exchange of adenine nucleotides and phosphate. For these processes empirical rate laws are used. The model is applied to calculate time-dependent states of energy transduction in isolated rat liver mitochondria. From the general agreement of the computational results with experimental data (Ogawa, S. and Lee, T.M. (1984) J. Biol. Chem. 259, 10004-10011) the following conclusions can be drawn. (1) The length of the time interval during which mitochondria are able to maintain a relatively high and constant delta pH in the absence of oxygen (anaerobiosis) is limited by the availability of intramitochondrial ATP. (2) The overshoot kinetics of delta pH which appear when reoxigenating mitochondria after a preceeding anaerobiosis might be due to a lag phase kinetics of the F0F1-ATPase. (3) In phosphorylating mitochondria the homeostasis of delta pH is brought about by a high sensitivity of the respiration rate and the rate of the F0F1-ATPase as to changes of delta pH. (4) Analysis of the mean transient times shows that the rate of ATP synthesis in State 3 is controlled to almost the same extent by the hydrogen supply, the respiratory chain, the adenine nucleotide translocator and the proton leak.  相似文献   

16.
Nucleotide-depleted mitochondrial F1-ATPase (F1[0,0]) is inhibited by the diadenosine oligophosphate compounds, AP4A, AP5A, and AP6A (where APxA stands for 5',5'-diadenosine oligophosphates having a chain of x phosphoryl groups linking the two adenosine moieties). When F1[0,0] is preincubated with these compounds and then assayed for ATP hydrolysis activity under conditions that normally allow turnover at all three catalytic sites, the maximal level of inhibition observed is 80%. However, when assayed at lower ATP concentrations under conditions that allow simultaneous turnover at only two of the three sites, no inhibition is observed. A decrease in the number of phosphoryl groups that links the adenosine moieties to less than 4 (AP3A, AP2A) converts the compound to an activator of ATP hydrolysis, similar in effect to that obtained when one mol of ADP or 2-azido-ADP binds at a catalytic site on F1[0,0]. Inhibition by the compounds requires the presence of at least one vacant noncatalytic site. Evidence is provided that the probes also interact with a catalytic site. The stoichiometry for maximal inhibition by AP4A is 0.94 mol/mol of F1. The data presented support a model for the structure of nucleotide-binding sites on F1 that places catalytic and noncatalytic sites in close proximity in an orientation analogous to the ATP and AMP binding sites on adenylate kinase. Inhibition of the enzyme by the dinucleotide compounds can be explained by the cross-bridging of one of the catalytic sites to a noncatalytic site in analogy to the inhibition of adenylate kinase by AP5A. The residual capacity for bi-site catalysis indicates that the second and third catalytic sites remain catalytically active.  相似文献   

17.
Cooperative interactions between nucleotide binding sites on beef heart mitochondrial F1-ATPase have been studied by measuring substrate-promoted release of 5'adenylyl-beta,gamma-imidodiphosphate (AMP-PNP) from a single high affinity site. The site is initially loaded by incubating F1 with an equimolar amount of the nonhydrolyzable ATP analog. When unbound [3H]AMP-PNP is removed and the complex diluted to a concentration below the Kd, release of ligand shows an apparent absolute requirement for medium ADP. Release is biphasic with the extent of release during the initial rapid phase dependent on the concentration of medium ADP. Although phosphate alone has no effect, it enhances the rapid phase of ADP-promoted release over 2-fold with a half-maximal effect at 60 micrometers P1. The binding of efrapeptin (A23871) to the F1.AMP-PNP complex completely prevents ADP-promoted dissociation. Although AMP-PNP release also occurs in the presence of medium ATP, the F1.AMP-PNP complex does not dissociate if an ATP-regenerating system of sufficient capacity to prevent accumulation of medium ADP is added. Consistent with an inability of nucleoside triphosphate to promote release is the failure of medium, nonradioactive AMP-PNP to affect retention of the 3H-labeled ligand. The stability of F1.AMP-PNP complex in the absence of medium nucleotide and the highly specific ability of ADP plus P1 to promote rapid release of the ATP analog are interpreted as support for an ATP synthesis mechanism that requires substrate binding at one catalytic site for product release from an adjacent interacting site.  相似文献   

18.
N Pfanner  W Neupert 《FEBS letters》1986,209(2):152-156
Transport of cytoplasmically synthesized precursor proteins into or across the inner mitochondrial membrane requires a mitochondrial membrane potential. We have studied whether additional energy sources are also necessary for protein translocation. Reticulocyte lysate (containing radiolabelled precursor proteins) and mitochondria were depleted of ATP by pre-incubation with apyrase. A membrane potential was then established by the addition of substrates of the electron transport chain. Oligomycin was included to prevent dissipation of delta psi by the action of the F0F1-ATPase. Under these conditions, import of subunit beta of F1-ATPase (F1 beta) was inhibited. Addition of ATP or GTP restored import. When the membrane potential was destroyed, however, the import of F1 beta was completely inhibited even in the presence of ATP. We therefore conclude that the import of F1 beta depends on both nucleoside triphosphates and a membrane potential.  相似文献   

19.
F(0).F(1)-ATP synthase in tightly coupled inside-out vesicles derived from Paracoccus denitrificans catalyzes rapid respiration-supported ATP synthesis, whereas their ATPase activity is very low. In the present study, the conditions required to reveal the Deltamu(H+)-generating ATP hydrolase activity of the bacterial enzyme have been elucidated. Energization of the membranes by respiration results in strong activation of the venturicidin-sensitive ATP hydrolysis, which is coupled with generation of Deltam?(H+). Partial uncoupling stimulates the proton-translocating ATP hydrolysis, whereas complete uncoupling results in inhibition of the ATPase activity. The presence of inorganic phosphate is indispensable for the steady-state turnover of the Deltam?(H+)-activated ATPase. The collapse of Deltam?(H+) brings about rapid deactivation of the enzyme, which has been subjected to pre-energization. The rate and extent of the deactivation depend on protein concentration, i.e. the more vesicles are present in the assay mixture, the higher the rate and extent of the deactivation is seen. Sulfite and the ADP-trapping system protect ATPase against the Deltam?(H+) collapse-induced deactivation, whereas phosphate delays the rate of deactivation. A low concentration of ADP (<1 microm) increases the rate of deactivation. Taken together, the results suggest that latent proton-translocating ATPase in P. denitrificans is kinetically equivalent to the previously characterized ADP(Mg2+)-inhibited, azide-trapped bovine heart mitochondrial F(0).F(1)-ATPase (Galkin, M. A., and Vinogradov, A. D. (1999) FEBS Lett. 448, 123-126). A Deltam?(H+)-sensitive mechanism operates in P. denitrificans that prevents physiologically wasteful consumption of ATP by F(0).F(1)-ATPase (synthase) complex when the latter is unable to maintain certain value of Deltam?(H+).  相似文献   

20.
This review concerns the catalytic sector of F1 factor of the H+-dependent ATPases in mitochondria (MF1), bacteria (BF1) and chloroplasts (CF1). The three types of F1 have many similarities with respect to the structural parameters, subunit composition and catalytic mechanism. An alpha 3 beta 3 gamma delta epsilon stoichiometry is now accepted for MF1 and BF1; the alpha 2 beta 2 gamma 2 delta 2 epsilon 2 stoichiometry for CF1 remains as matter of debate. The major subunits alpha, beta and gamma are equivalent in MF1, BF1 and CF1; this is not the case for the minor subunits delta and epsilon. The delta subunit of MF1 corresponds to the epsilon subunit of BF1 and CF1, whereas the mitochondrial subunit equivalent to the delta subunit of BF1 and CF1 is probably the oligomycin sensitivity conferring protein (OSCP). The alpha beta gamma assembly is endowed with ATPase activity, beta being considered as the catalytic subunit and gamma as a proton gate. On the other hand, the delta and epsilon subunits of BF1 and CF1 most probably act as links between the F1 and F0 sectors of the ATPase complex. The natural mitochondrial ATPase inhibitor, which is a separate protein loosely attached to MF1, could have its counterpart in the epsilon subunit of BF1 and CF1. The generally accepted view that the catalytic subunit in the different F1 species is beta comes from a number of approaches, including chemical modification, specific photolabeling and, in the case of BF1, use of mutants. The alpha subunit also plays a central role in catalysis, since structural alteration of alpha by chemical modification or mutation results in loss of activity of the whole molecule of F1. The notion that the proton motive force generated by respiration is required for conformational changes of the F1 sector of the H+-ATPase complex has gained acceptance. During the course of ATP synthesis, conversion of bound ADP and Pi into bound ATP probably requires little energy input; only the release of the F1-bound ATP would consume energy. ADP and Pi most likely bind at one catalytic site of F1, while ATP is released at another site. This mechanism, which underlines the alternating cooperativity of subunits in F1, is supported by kinetic data and also by the demonstration of partial site reactivity in inactivation experiments performed with selective chemical modifiers. One obvious advantage of the alternating site mechanism is that the released ATP cannot bind to its original site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号