首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The expression of glycan chains is precisely regulated in a time- and space-dependent manner. We summarize here our recent work on the kidney tubular cell-specific regulation of core 2 beta-1,6-GlcNAc transferase. Gsl5 gene was first identified by genetic analysis on the basis of polymorphic expression of kidney glycolipids among inbred strains of mice and turned out to be a regulatory gene controlling the level of mRNA of kidney-specific core 2 beta-1,6-GlcNAc transferase. This kidney-specific core 2 GlcNAc transferase takes glycolipids having Gal beta 1-3GalNAc at their termini, Gal beta 1-3GalNAc alpha 1- and beta 1-oligosaccharide derivatives, and glycoproteins having core 1 structure, as substrates. Immunohistochemistry with anti-core 2-Le( x ) monoclonal antibody demonstrated that vesicles located just below the microvillous membrane of proximal tubule cells were clearly stained in a Gsl5 -wild type mouse. Western blotting with the monoclonal antibody detected a major glycoprotein with a molecular mass of 500 kDa in the microsomal fraction of the wild type mouse kidney. In situ hybridization with anti-sense cDNA of kidney-specific core 2 GlcNAc transferase confirmed that Gsl5 gene controls the expression of the core 2 beta-1,6-GlcNAc transferase mRNA in a proximal tubular cell-specific manner. The 5' upstream sequences of the kidney-specific core 2 GlcNAc transferase gene in inbred and wild-derived strains of mice were analyzed, and the phylogenetic analysis of these sequences suggests that functional Gsl5 gene might be produced by the time of subspeciation of M. musculus, about one million years ago.  相似文献   

3.
4.
The expression of glycan chains is precisely regulated in a time- and space-dependent manner. We summarize here our recent work on the kidney tubular cell-specific regulation of core 2 β-1,6-GlcNAc transferase. Gsl5 gene was first identified by genetic analysis on the basis of polymorphic expression of kidney glycolipids among inbred strains of mice and turned out to be a regulatory gene controlling the level of mRNA of kidney-specific core 2 β-1,6-GlcNAc transferase. This kidney-specific core 2 GlcNAc transferase takes glycolipids having Galβ1-3GalNAc at their termini, Galβ1-3GalNAcα1- and β1-oligosaccharide derivatives, and glycoproteins having core 1 structure, as substrates. Immunohistochemistry with anti-core 2-Le x monoclonal antibody demonstrated that vesicles located just below the microvillous membrane of proximal tubule cells were clearly stained in a Gsl5-wild type mouse. Western blotting with the monoclonal antibody detected a major glycoprotein with a molecular mass of 500 kDa in the microsomal fraction of the wild type mouse kidney. In situ hybridization with anti-sense cDNA of kidney-specific core 2 GlcNAc transferase confirmed that Gsl5 gene controls the expression of the core 2 β-1,6-GlcNAc transferase mRNA in a proximal tubular cell-specific manner. The 5′ upstream sequences of the kidney-specific core 2 GlcNAc transferase gene in inbred and wild-derived strains of mice were analyzed, and the phylogenetic analysis of these sequences suggests that functional Gsl5 gene might be produced by the time of subspeciation of M. musculus, about one million years ago. Published in 2004. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
GET Recombination, a simple inducible homologous recombination system for Escherichia coli, was used to target insertion of an EGFP cassette between the start and termination codons of the beta-globin gene in a 200 kb BAC clone. The high degree of homology between the promoter regions of the beta- and delta-globin genes also allowed the simultaneous generation of a delta-globin reporter construct with the deletion of 8.8 kb of intervening sequences. Both constructs expressed EGFP after transient transfection of MEL cells. Similarly, targeting of the EGFP cassette between the promoter regions of the gamma-globin genes and the termination codon of the beta-globin gene enabled the generation of reporter constructs for both (A)gamma- and (G)gamma-globin genes, involving specific deletions of 24 and 29 kb of genomic sequence, respectively. Finally the EGFP cassette was also inserted between the epsilon- and beta-globin genes, with the simultaneous deletion of 44 kb of intervening sequence. The modified constructs were generated at high efficiency, illustrating the usefulness of GET Recombination to generate large deletions of specific sequences in BACs for functional studies. The establishment of stable erythropoietic cell lines with these globin constructs will facilitate the search for therapeutic agents that modify the expression of the individual globin genes in a physiologically relevant manner.  相似文献   

13.
14.
Gong S  Kus L  Heintz N 《Nature protocols》2010,5(10):1678-1696
We report here a high-throughput method for the modification of bacterial artificial chromosomes (BACs) that uses a novel two-plasmid approach. In this protocol, a vector modified in our laboratory to hold an R6Kγ origin of replication and a marker recombination cassette is inserted into a BAC in a single recombination step. Temporal control of recombination is achieved through the use of a second plasmid, pSV1.RecA, which possesses a recombinase gene and a temperature-sensitive origin of replication. This highly efficient protocol has allowed us to successfully modify more than 2,000 BACs, from which over 1,000 BAC transgenic mice have been generated. A complete cycle from BAC choice to embryo implantation takes about 5 weeks. Marker genes introduced into the mice include EGFP and EGFP-L10a. All vectors used in this project can be obtained from us by request, and the EGFP reporter mice are available through the Mutant Mouse Regional Resource Center (NINDS/GENSAT collection). CNS anatomical expression maps of the mice are available to the public at http://www.gensat.org/.  相似文献   

15.
16.
17.
It has been established that two developmentally and functionally distinct cell types emerge within the mammalian testis and adrenal gland throughout life. Fetal and adult types of steroidogenic cells (i.e., testicular Leydig cells and adrenocortical cells) develop in the prenatal and postnatal period, respectively. Although the ovary synthesizes steroids postnatally, the presence of fetal-type steroidogenic cells has not been described. We had previously established transgenic mouse lines in which fetal Leydig cells were labeled with an EGFP reporter gene by the FLE (fetal Leydig enhancer) of the Ad4BP/SF-1 (Nr5a1) gene. In the present study, we examined the reporter gene expression in females and found that the reporter gene is turned on in postnatal ovaries. A comparison of the expressions of the EGFP and marker genes revealed that EGFP is expressed in not all but rather a proportion of steroidogenic theca and in interstitial gland cells in the ovary. This finding was further supported by experiments using BAC transgenic mice in which reporter gene expression recapitulated endogenous Ad4BP/SF-1 gene expression. In conclusion, our observations from this study strongly suggest that ovarian theca and interstitial gland cells in mice consist of at least two cell types.  相似文献   

18.
Lengthened circadian period of locomotor activity is a characteristic of a congenic strain of mice carrying a nonsense mutation in exon 5 of the carbonic anhydrase II gene, car2. The null mutation in car2 is located on a DBA/2J inbred strain insert on proximal chromosome 3, on an otherwise C57BL/6J genomic background. Since reducing the size of the congenic region would narrow the possible candidate genes for period, two recombinant congenic strains (R1 and R2) were developed from the original congenic strain. These new congenic strains were assessed for period, genetic composition, and the presence of immunoreactive carbonic anhydrase II. R1 mice were homozygous DBA/2J for the distal portion of the original DBA/2J insert, while R2 mice were homozygous DBA/2J for the proximal portion. R1 mice had a significantly lengthened period compared to R2 mice and wild-type C57BL/6J mice, indicating that the gene(s) affecting period is likely found within the reduced DBA/2J insert (?1 cM) in the R1 mice. The R1 mice also possessed the null mutation in car2. This study confirmed the presence of a gene(s) affecting period on proximal chromosome 3 and significantly reduced the size of the congenic region and the number of candidate genes. Future studies will focus on identifying the gene influencing period.  相似文献   

19.
Lengthened circadian period of locomotor activity is a characteristic of a congenic strain of mice carrying a nonsense mutation in exon 5 of the carbonic anhydrase II gene, car2. The null mutation in car2 is located on a DBA/2J inbred strain insert on proximal chromosome 3, on an otherwise C57BL/6J genomic background. Since reducing the size of the congenic region would narrow the possible candidate genes for period, two recombinant congenic strains (R1 and R2) were developed from the original congenic strain. These new congenic strains were assessed for period, genetic composition, and the presence of immunoreactive carbonic anhydrase II. R1 mice were homozygous DBA/2J for the distal portion of the original DBA/2J insert, while R2 mice were homozygous DBA/2J for the proximal portion. R1 mice had a significantly lengthened period compared to R2 mice and wild-type C57BL/6J mice, indicating that the gene(s) affecting period is likely found within the reduced DBA/2J insert (~1 cM) in the R1 mice. The R1 mice also possessed the null mutation in car2. This study confirmed the presence of a gene(s) affecting period on proximal chromosome 3 and significantly reduced the size of the congenic region and the number of candidate genes. Future studies will focus on identifying the gene influencing period.  相似文献   

20.
Mouse myosin-VIIb, a novel unconventional myosin, was cloned from the inner ear and kidney. The human myosin-VIIb (HGMW-approved symbol MYO7B) sequence and exon structure were then deduced from a human BAC clone. The mouse gene was mapped to chromosome 18, approximately 0.5 cM proximal to D18Mit12. The human gene location at 2q21.1 was deduced from the map location of the BAC and confirmed by fluorescence in situ hybridization. Myosin-VIIb has a conserved myosin head domain, five IQ domains, two MyTH4 domains coupled to two FERM domains, and an SH3 domain. A phylogenetic analysis based on the MyTH4 domains suggests that the coupled MyTH and FERM domains were duplicated in myosin evolution before separation into different classes. Myosin-VIIb is expressed primarily in kidney and intestine, as shown by Northern and immunoblot analyses. An antibody to myosin-VIIb labeled proximal tubule cells of the kidney and enterocytes of the intestine, specifically the distal tips of apical microvilli on these transporting epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号