首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Martin Diekmann 《Ecography》1995,18(2):178-189
Ellenberg's indicator values for light, moisture and reaction were tested in deciduous hardwood forests of the Boreo-nemoral zone m Sweden Weighted averages of indicator values were calculated and correlated with field measurements for two test sets of relevés The best, highly significant correlations were found for reaction, particularly for weighted averages based on vascular plant species Significant correlations were also found for light, whereas those for moisture were less good and only partly significant Weighted averages based on presence/absence values and those based on cover/abundance values were generally very similar to each other, but showed differences in their correlations with actual measurements
A training set of relevés was used to calculate optima and ecological amplitudes of the most common species Under certain conditions, the original indicator values were replaced by these optima in order to obtain improved indicator values for Swedish deciduous forests These were correlated with the same test sets of field measurements as the original values and clearly gave better results for light as well as for reaction regarding vascular plants No clear differences were found for moisture and reaction regarding bryophytes For the majority of species, the original indicator values also expressed the ecological optima in Swedish deciduous forests as determined by this study However, several species, most of them preferring more open habitats, showed ecological optima and amplitudes that considerably deviated from central European conditions In conclusion, Ellenberg's indicator values can successfully be used in south Swedish deciduous forests, particularly after calibration of the values according to regional deviations  相似文献   

2.
Knowledge about relationships between specialization degree of species, i.e. the width of their realized niche and functional traits, may have important implications for the assessment of future population developments under environmental change. In this study, we used a recently introduced method to calculate ecological niche widths of plant species in mixed broad-leaved deciduous forests and to investigate the dependence between niche widths of plants and their functional traits and Ellenberg indicator values. The research is based on a dataset of 4556 phytosociological relevés of mixed broad-leaved deciduous forests in Slovenia. We calculated theta indices for 326 species, which ranks them along a continuous gradient of habitat specialization. For 272 species, we compiled 26 functional traits and Ellenberg indicator values. We found some significant correlations between theta indices of species and their functional traits and Ellenberg indicator values; habitat specialists thrive primarily on the highest altitudes, on colder, dry sites and achieve the age of first flowering later than generalists. They also have smaller seed diameter, lower leaf dry matter content, lower mean canopy height and bigger specific leaf area than generalists. Two species groups, chamaephytes and spring green species, are particularly characterized as specialist species. The added value of our work is in complementing the knowledge about the niche differentiating along different environmental gradients and species coexistence in mixed broad-leaved deciduous forests.  相似文献   

3.
Abstract. In this study we present a new method for predicting the occurrences of species using data from deciduous forests in South Sweden. Complete species lists of vascular plants were compiled from 101 stands and from representative sample plots inside the stands. Soil samples from each stand were collected for determination of pH and nitrogen mineralization. Presence-absence data for species were fitted to the values of four environmental variables - soil moisture, soil reaction (pH), soil nitrogen and light - by means of Linear (Multiple) Logistic Regression (LLR), and Gaussian (Multiple) Logistic Regression (GLR). First, these values were estimated by calculating the weighted averages of Ellenberg indicator values. Second, the estimates for reaction and nitrogen were substituted by the real measurements of pH and mineralized NH4+, keeping the Ellenberg estimates for light and moisture. The models were validated by an independent test data set. In general, the models had high predictive abilities. GLR fitted the species occurrences better to the environmental variables than LLR, but had a lower accuracy of prediction of species occurrence in the stands. The use of soil measurements instead of Ellenberg indicator values did not improve the predictive abilities of the models. The environmental conditions in the stand test set were successfully estimated by using species data from the plots. When using the species lists of the stands instead of plot data, a slightly better predictive ability was obtained. The collection of plot data, however, is easier and less time-consuming. The accuracy of prediction differed considerably between species.  相似文献   

4.
Data from 300 forest stands, scattered over 29 states within the eastern North American deciduous forest, were subjected to detrended correspondence analysis (DCA) and two-way indicator species analysis (TWINSPAN) in an effort to identify classifiable units. Most species are widespread which provide a great deal of continuity in the vegetation.The deciduous forest can be divided into three forest regions: (1) northern, (2) central and (3) southern. The northern region corresponds to the hemlock-white pine-northern hardwood forest of Braun (1950). The central region includes the beech-maple and oak-hickory forests. The beech-maple as identified here includes the mixed mesophytic, beech-maple, maple-basswood and about half of the western mesophytic forests of Braun (1950). The oak-hickory includes Braun's oak-hickory, oak-chestnut and about half of the western mesophytic forests. The southern region coincides with the southern mixed hardwood forests.  相似文献   

5.
Question: Species optima or indicator values are frequently used to predict environmental variables from species composition. The present study focuses on the question whether predictions can be improved by using species environmental amplitudes instead of single values representing species optima. Location: Semi‐natural, deciduous hardwood forests of northwestern Germany. Methods: Based on a data set of 558 relevés, species responses (presence/absence) to pH were modelled with Huisman‐Olff‐Fresco (HOF) regression models. Species amplitudes were derived from response curves using three different methods. To predict the pH from vegetation, a maximum amplitude overlap method was applied. For comparison, predictions resulting from several established methods, i. e. maximum likelihood/present and absent species, maximum likelihood/present species only, mean weighted averages and mean Ellenberg indicator values were calculated. The predictive success (squared Pearson's r and root mean square error of prediction) was evaluated using an independent data set of 151 relevés. Results: Predictions based upon amplitudes defined by maximum Cohen's x probability threshold yield the best results of all amplitude definitions (R2= 0.75, RMSEP = 0.52). Provided there is an even distribution of the environmental variable, amplitudes defined by predicted probability exceeding prevalence are also suitable (R2= 0.76, RMSEP = 0.55). The prediction success is comparable to maximum likelihood (present species only) and – after rescaling – to mean weighted averages. Predicted values show a good linearity to observed pH values as opposed to a curvilinear relationship of mean Ellenberg indicator values. Transformation or rescaling of the predicted values is not required. Conclusions: Species amplitudes given by a minimum and maximum boundary for each species can be used to efficiently predict environmental variables from species composition. The predictive success is superior to mean Ellenberg indicator values and comparable to mean indicator values based on species weighted averages.  相似文献   

6.
Abstract. The study was conducted in deciduous forests of two Swedish regions, Öland and Uppland. It had two objectives: to (1) test the species pool hypothesis by examining if differences in small‐scale species richness are related to differences in large‐scale species richness and the size of the regional species pool, and (2) to examine the relationship between species richness and productivity and its scale‐dependence. The first data set comprised 36 sites of moderate to high productivity. In each site, we recorded the presence of vascular plant species in nested plots ranging from 0.001 to 1000 m2 and measured several environmental variables. Soil pH and Ellenberg site indicator scores for nitrogen were used as estimators of productivity. The second data set included 24 transects (each with 20 1‐m2 plots) on Öland in sites with low to high productivity. Species number, soil pH and relative light intensity were determined in each plot. The forest sites on Öland were more species‐rich than the Uppland sites on all spatial scales, although environmental conditions were similar. Small‐scale and large‐scale species richness were positively correlated. The results present evidence in favour of the species pool hypothesis. In the nested‐plots data set, species number was negatively correlated with pH and nitrogen indicator scores, whereas a unimodal relationship between species number and pH was found for the transect data set. These results, as well as previously published data, support the hump‐shaped relationship between species richness and productivity in Swedish deciduous forests. Two explanations for the higher species richness of the sites with moderate productivity are given: first, these sites have a higher environmental heterogeneity and second, they have a larger ‘habitat‐specific’ species pool.  相似文献   

7.
Threatened (n = 59) and non-threatened (n = 308) Swedish forest vascular plant taxa were compared with regard to a number of variables, including distribution, site factors taxonomy, morphology and flowering time A majority of the threatened taxa occur in the southern deciduous woodlands, which only constitute c 0.5% of the total forested area in Sweden There are considerably more threatened taxa in southern than in northern Sweden, a consequence of the successively higher number of forest vascular plants from the north towards the south Threatened taxa grow in forests with significantly higher soil fertility than non-threatened taxa Significant differences were also revealed regarding light conditions, soil water conditions and month of flowering Threatened taxa grow on soils with significantly higher pH and also with slightly more available nitrogen than non-threatened taxa, as measured with Ellenberg indicator values Forest stands on fertile soils are uncommon in Sweden and they are also very species-rich Soil-type rarity in combination with high species diversity in these soil types thus partly explain why taxa are included in the Swedish Red data list  相似文献   

8.
In this study we examine the relationships between the vegetation of beech and beech-oak forest communities (Hordelymo-Fagetum, Galio-Fagetum, Deschampsio-Fagetum, Betulo-Quercetum) and their soil conditions in the lowlands of northern Germany, based on 84 sample plots. In all plots the vegetation was recorded and soil parameters were analysed (thickness of the O- and the A-horizons, pH, S-value, base saturation, C/N, mean Ellenberg moisture indicator value). The vegetation classification according to the traditional Braun-Blanquet approach was compared with the result of a multivariate cluster analysis. Vegetation-site relationships were analysed by means of an indirect gradient analysis (DCA).Both traditional classification methods and the cluster analysis have produced comparable classification results. So far as the species composition is concerned, a similar grouping of sample plots was found in both approaches. Multivariate cluster analysis thus supports the classification found by the Braun-Blanquet method. The result of the DCA shows that the four forest communities mentioned above represent clearly definable ecological units. The main site factor influencing changes in the species composition is a base gradient, which is best expressed by the S-value. In addition, within the series Hordelymo-Fagetum - Galio-Fagetum - Deschampsio-Fagetum the C/N-ratios and the thickness of the organic layers (O-horizon) increase continuously. By contrast, the floristic differences between oligotrophic forest communities (i.e., Deschampsio-Fagetum and Betulo-Quercetum) cannot be explained by a base gradient and increasing C/N-ratios. It is suggested that a different forest management history in some cases (e.g., promotion of Quercus robur by silvicultural treatments) is responsible for differences in the species composition, but on the other hand the result of the DCA indicates that Fagus sylvatica is replaced by Quercus robur with increasing soil moisture (i.e., with the increasing influence of a high groundwater table). Summarizing these results, it can be concluded that the ecological importance of single site factors affecting the species composition changes within the entire site spectrum covered by the beech and beech-oak forests of northern Germany.  相似文献   

9.
Species distribution depends on the physiological and ecological niche where a species can exist and regenerate in resource competition with other species (niche limitation). The realized niche is influenced by local biotic processes that influence species behaviour and the shape of the response curves relative to environmental gradients. Processes on larger scales also influence the species niche through source-sink mechanisms (dispersal limitation) and the species richness of an area (pool limitation). Despite the growing evidence of skewed or irregular species response curves along gradients, many ecologists still assume symmetric, unimodal response curves along gradients in ecological interpretation. Ellenberg’s indicator system is probably the most common example. However, the assumption is not ecologically or statistically valid, due to the many different processes affecting the distribution of plant species. Here I present the results of Huisman-Olff-Fresco (HOF) regressions for 209 Danish forest species. HOF modelling is chosen to avoid the classical drawbacks of assuming symmetric, unimodal response patterns. I calculate the optima for all species with unimodal responses to soil pH and compare these with the Ellenberg indicator values for reaction (R), which are often used as a substitute for soil pH measurements. I demonstrate that the assumption of symmetric, unimodal species behaviour is violated in 54% of the cases and that pH optima and R indicator values for species are not always compatible. Ellenberg reaction scale has been used byEwald (Folia Geobot. 38: 357–366, 2003) as an indicator of which species are calcicole, i.e., whether they can grow and reproduce on calcareous soils. Such affinities of species, however, are related to both local niche properties and processes on large scales and cannot be generalized from a single empirical variable such as pH, nor from Ellenberg semi-ordinal indicator scale. I conclude that while the determination of whether species are calcicole or calcifuge requires more research, it is evident that Denmark contains a fairly balanced number of calciphytic and acidophytic species. This is probably due to the nearly equal areas with acidic and alkaline soils in Denmark, which also contribute to the high species richness of more than 500 vascular plant species in Danish forests.  相似文献   

10.
Abstract: We studied permanent plots in deciduous forests in two provinces of South Sweden, Skåne (127 plots) and Småland (116 plots). Vegetation data were sampled in 1983 and 1993 and used to calculate weighted averages of Ellenberg indicator values for light, reaction (pH) and nitrogen. Soil samples were collected from all plots in 1993 for determination of pH, organic matter content and potential net nitrogen mineralization (minN). Data on minN were also available for 66 plots in Skåne from 1983. Nitrogen deposition is considerably higher in Skåne than in Småland. The same holds true for total minN, minNH4+, minNO3--, and the proportion of total minN due to nitrate (nitrification ratio). According to the comparison of average Ellenberg indicator values between 1983 and 1993, the stands had become darker (not in the heavily managed plots), more acid and nitrogen rich, except at the most acid sites where only minor changes could be observed. The nitrification ratio was significantly higher in 1993 than in 1983. Mean soil nitrification ratios were determined for the most common species in both regions. The means were higher in Skåne than in Småland. It is likely that nitrogen deposition causes an increase in nitrification rate and nitrification ratio. This ratio is a significant determinant of the species composition in deciduous forests.  相似文献   

11.
Ecological niches of organisms vary across geographical space, but niche shift patterns between regions and the underlying mechanisms remain largely unexplored. We studied shifts in the pH niche of 42 temperate forest plant species across a latitudinal gradient from northern France to boreo‐nemoral Sweden. We asked 1) whether species restrict their niches with increasing latitude as they reach their northern range margin (environmental constraints); 2) whether species expand their niches with increasing latitude as regional plant species richness decreases (competitive release); and 3) whether species shift their niche position toward more acidic sites with increasing latitude as the relative proportion of acidic soils increases (local adaptation). Based on 1458 vegetation plots and corresponding soil pH values, we modelled species response curves using Huisman–Olff–Fresco models. Four niche measures (width, position, left and right border) were compared among regions by randomization tests. We found that with increasing latitude, neutrophilic species tended to retreat from acidic sites, indicating that these species retreat to more favorable sites when approaching their range margin. Alternatively, these species might benefit from enhanced nitrogen deposition on formerly nutrient‐poor, acidic sites in southern regions or lag behind in post‐glacial recolonization of potential habitats in northern regions. Most acidophilic species extended their niche toward more base‐rich sites with increasing latitude, indicating competitive release from neutrophilic species. Alternatively, acidophilic species might benefit from optimal climatic conditions in the north where some have their core distribution area. Shifts in the niche position suggested that local adaptation is of minor importance. We conclude that shifts in the pH niche of temperate forest plants are the rule, but the directions of the niche shifts and possible explanations vary. Our study demonstrates that differentiating between acidophilic and neutrophilic species is crucial to identify general patterns and underlying mechanisms.  相似文献   

12.
This study attempts to understand the biogeographic history of the Western Ghats forests by investigating decoupling between phylogenetic and taxonomic diversity. We specifically test whether the deciduous forests have been recently established, whether the southern region was a refuge, and whether the deciduous and evergreen forest species have disparate evolutionary histories. We used species composition data from 23 forest types along the Western Ghats for all woody angiosperms above 10‐cm diameter at breast height. Forests were broadly grouped as either evergreen or deciduous. Mean phylogenetic distances corrected for species richness and mean phylogenetic beta diversity corrected for shared species were assessed using z‐scores from null distributions. Null distributions were generated by randomizing the species relationships on the phylogeny. We found that all evergreen forests showed a greater phylogenetic diversity as compared with null expectations. Deciduous forests showed the inverse pattern. Within the evergreen belt, there was a decreasing phylogenetic diversity from south to north, as predicted by the southern refuge hypothesis. The phylogenetic beta diversity across evergreen–deciduous forests was lesser than the null expectation, whereas it was much higher across forests within the evergreen belt. This study provides the first phylogenetic evidence for the antiquity of evergreen forests as well as the southern refuge hypothesis in the Western Ghats. The deciduous forests species have shared evolutionary histories with the evergreen forest species, suggesting multiple shifts between evergreen and deciduous states through the lineages. Conversely, the evergreen species exhibited a disparate evolutionary history across these forests, possibly owing to sharper ecological or climatic gradients.  相似文献   

13.
We investigated the relationship between soil pH/calcium content and species richness of vascular plants in seven broadly defined Central European vegetation types, using Ellenberg indicator values for soil reaction and a phytosociological data set of 11,041 vegetation sample plots from the Czech Republic. The vegetation types included (A) broad-leaved deciduous forests, (B) meadows, (C) dry grasslands, (D) reed-bed and tall-sedge vegetation, (E) fens and transitional mires, (F) perennial synanthropic vegetation and (G) annual synanthropic vegetation. Relationships between local species richness (alpha diversity) and pH/calcium were positive for vegetation types A and C, negative for D and G, unimodal for E, and insignificant for B and F. Ellenberg soil reaction values explained 37% of variation in local species richness for vegetation type E, 24% for A, 13% for D, but only less than 4% for the others. Species pool size, i.e., the number of species that can potentially occur in a given habitat, was calculated for each plot using Beals index of sociological favourability applied to a large phytosociological database. For most vegetation types, the relationships between species pool size and pH/calcium were similar to the relationships between local species richness and pH/calcium, with the exception of meadows (weak unimodal) and perennial synanthropic vegetation (weak negative).These patterns suggest that for those types of Central European vegetation that developed independently of human influence in the Pleistocene or early Holocene (dry grasslands, deciduous forests), there are larger pools of calcicole than calcifuge species. This pattern is also found at the level of local species richness, where it is, however, less clearly pronounced, possibly due to the predominance of a few widespread and generalist calcifuges in acidic habitats. The unimodal pattern found in mires may result from similar underlying mechanisms, but in high pH environments mineral-rich spring waters probably decrease species richness by having toxic effects on plant growth. By contrast, vegetation types developed under direct human influence (meadows, synathropic vegetation) show weak negative or no relationships of local species richness or species pool to pH/calcium gradient. These results support the hypothesis ofPärtel (Ecology 83: 2361–2366, 2002) andEwald (Folia Geobot. 38: 357–366, 2003), that the modern calcicole/calcifuge disparity in the species pool of Central European flora has resulted from historical and evolutionary processes that took place on high pH soils. In the Pleistocene, calcareous soils dominated both the dry continental landscapes of Central Europe and glacial refugia of temperate flora, which were mostly situated in southern European mountain ranges with abundant limestone and dolomite. The negative pattern of species richness along the pH/calcium gradient found in reed-bed and tall-sedge vegetation, however, is not consistent with this historical explanation.  相似文献   

14.
车俭  郑洁  蒋娅  金毅  乙引 《植物生态学报》2020,44(10):1007-1014
常绿和落叶木本被子植物是组成东亚地区亚热带阔叶林的两个主要植物类群。探索常绿和落叶木本被子植物的生态位差异, 对于推测亚热带阔叶林群落的生物多样性维持机制, 具有重要意义。该研究采用线性回归模型和Mantel检验多元回归等统计手段, 分析了中国亚热带地区8个森林动态监测样地的常绿和落叶木本被子植物谱系和生态习性差异。主要结果: (1)该研究的788个被子植物分类单元的叶习性(常绿和落叶)具有一定的谱系保守性。常绿和落叶植物对光照、温度、水分、土壤反应和土壤肥力因子的生态习性均有差异, 表现为常绿植物偏好较低的光照和土壤pH, 以及较高的温度、水分和土壤肥力; 落叶植物则相反。(2)样地内落叶较常绿植物的种间谱系散布更收敛, 但生态习性散布更发散; 样地间落叶较常绿类群的谱系组成差异更小, 但生态习性差异更大; 样地间落叶类群的谱系组成差异随年平均气温差异的增大而增大。(3)落叶/常绿植物物种数量的比例随年平均气温升高而降低, 而旱季持续时间和年降水量等因子的影响不明显。该研究证实了我国亚热带地区8个森林动态监测样地内的常绿和落叶木本被子植物在谱系和生态习性上均存在巨大差异, 生态位分化在很大程度上是促进亚热带阔叶林群落内生物多样性维持的重要机制。  相似文献   

15.
The distribution of 725 species and 4 subspecies of vascular plants in 522 grid squares of 50×50 km within Denmark, Finland, Norway and Sweden was analysed by detrended correspondence analysis (DCA) and two-way indicator species analysis (TWINSPAN). Two phytogeographical gradients were recognized: a major gradient running both latitudinally and altitudinally, from southern and lowland areas to northern and mountain districts, and from southerly distributed species to alpine and northerly distributed species, and a secondary gradient running from eastern districts and easterly distributed species to western districts and westerly distributed species. The results are in agreement with previous recognized phytogeographical patterns within the considered area. Possible ecological and historical causes for these patterns are briefly discussed.  相似文献   

16.
Soil pH is a key predictor of plant species occurrence owing to its effect on the availability of nutrients and phytotoxic metals. Although regional differences in realized soil pH niche (‘niche shifts’) have been reported since the 19th century, no study has disentangled how they are influenced by spatial differences in substrate availability, macroclimate, and competitors. We linked plot‐level data on species occurrence and measured soil pH from dry grasslands in eight regions across Eurasia (n = 999 plots), spanning a geographic gradient of 6862 km. We calculated regional shifts in niche optimum (Dopt) and width (Dwidth) for 73 Species × Region 1 × Region 2 combinations (SRRs; 38 study species) using extended Huisman–Olff–Fresco models. Next, we used commonality analysis to partition the contribution of substrate availability, precipitation, and species traits indicative of competitive ability to variation in regional niche shifts. Shifts in optimum were rare (5% of SRRs with Dopt ≥ 1 pH units) but many species did not show optima within regions. By contrast, shifts in niche width were common (22% of SRRs with Dwidth ≥1 pH units) and there were pronounced interspecific differences. Whereas none of the three predictors significantly explained shifts in niche optimum, common and unique effects of substrate availability and precipitation accounted for 85% of variation in niche width. Our results suggest that substrate availability and precipitation could be the driving factors behind species regional shifts in niche width. Studies that address additional factors, such as other edaphic niches, and their variability at the regional and micro‐scale will improve our understanding of the mechanisms underlying species distributions.  相似文献   

17.
位于亚热带的浙江天童和古田山常绿阔叶林大样地分布有较高比例的落叶树种,那么它们与常绿树种的共存机制是什么?常绿树种和落叶树种生态习性差异较大,二者对生境的选择应有所不同,我们推测生境分化可能是两类植物实现共存的主要机制。为检验该假设,我们以天童20ha动态样地调查数据为依托,选择个体数≥20的55个常绿树种和42个落叶树种作为分析对象,用典范对应分析(CCA)研究了地形因子对二者分布的影响差异,用torus转换检验来分析常绿树种和落叶树种与各类地形生境的关联。结果如下:(1)CCA分析表明地形因子对常绿树种分布的解释量为19.2%,对落叶树种分布的解释量为7.0%。(2)torus转换检验结果表明,与沟谷成正关联的常绿树种和落叶树种的比例分别为16.4%和28.6%,成负关联的比例分别为40%和7%;与山脊成正关联的常绿树种和落叶树种的比例分别为41.8%和4.8%,成负关联的比例分别为10.9%和47.6%;与受干扰生境成正关联的常绿树种和落叶树种的比例分别为16.4%和42.9%。上述结果说明地形对常绿树种分布的影响大于落叶树种;两个植物类群对生境的选择多呈现相反格局,尤其是在沟谷生境和山脊生境,这进一步表明生境分化是常绿树种和落叶树种共存的重要机制之一,生态位理论在一定程度上能较好地解释亚热带常绿阔叶林物种多样性的维持。  相似文献   

18.
To quantify and assess the processes underlying community assembly and driving tree species abundance distributions(SADs) with spatial scale variation in two typical subtropical secondary forests in Dashanchong state‐owned forest farm, two 1‐ha permanent study plots (100‐m × 100‐m) were established. We selected four diversity indices including species richness, Shannon–Wiener, Simpson and Pielou, and relative importance values to quantify community assembly and biodiversity. Empirical cumulative distribution and species accumulation curves were utilized to describe the SADs of two forests communities trees. Three types of models, including statistic model (lognormal and logseries model), niche model (broken‐stick, niche preemption, and Zipf‐Mandelbrodt model), and neutral theory model, were estimated by the fitted SADs. Simulation effects were tested by Akaike's information criterion (AIC) and Kolmogorov–Smirnov test. Results found that the Fagaceae and Anacardiaceae families were their respective dominance family in the evergreen broad‐leaved and deciduous mixed communities. According to original data and random sampling predictions, the SADs were hump‐shaped for intermediate abundance classes, peaking between 8 and 32 in the evergreen broad‐leaved community, but this maximum increased with size of total sampled area size in the deciduous mixed community. All niche models could only explain SADs patterns at smaller spatial scales. However, both the neutral theory and purely statistical models were suitable for explaining the SADs for secondary forest communities when the sampling plot exceeded 40 m. The results showed the SADs indicated a clear directional trend toward convergence and similar predominating ecological processes in two typical subtropical secondary forests. The neutral process gradually replaced the niche process in importance and become the main mechanism for determining SADs of forest trees as the sampling scale expanded. Thus, we can preliminarily conclude that neutral processes had a major effect on biodiversity patterns in these two subtropical secondary forests but exclude possible contributions of other processes.  相似文献   

19.
Due to climate change, the ranges of many North American tree species are expected to shift northward. Sugar maple (Acer saccharum Marshall) reaches its northern continuous distributional limit in northeastern North America at the transition between boreal mixed‐wood and temperate deciduous forests. We hypothesized that marginal fragmented northern populations from the boreal mixed wood would have a distinct pattern of genetic structure and diversity. We analyzed variation at 18 microsatellite loci from 23 populations distributed along three latitudinal transects (west, central, and east) that encompass the continuous–discontinuous species range. Each transect was divided into two zones, continuous (temperate deciduous) and discontinuous (boreal mixed wood), based on sugar maple stand abundance. Respective positive and negative relationships were found between the distance of each population to the northern limit (D_north), and allelic richness (AR) and population differentiation (FST). These relations were tested for each transect separately; the pattern (discontinuous–continuous) remained significant only for the western transect. structure analysis revealed the presence of four clusters. The most northern populations of each transect were assigned to a distinct group. Asymmetrical gene flow occurred from the southern into the four northernmost populations. Southern populations in Québec may have originated from two different postglacial migration routes. No evidence was found to validate the hypothesis that northern populations were remnants of a larger population that had migrated further north of the species range after the retreat of the ice sheet. The northernmost sugar maple populations possibly originated from long‐distance dispersal.  相似文献   

20.
Data have been compiled on the distribution, habitat preferences and population sizes of 348 vertebrates reproducing in Sweden (excluding fish) and their species richness in different habitats and regions was investigated. Furthermore, we compared the habitat preferences and distribution of rare and common vertebrates. The relative species number (corrected for area) increases from the north (the hemiarctic/boreal zone) to the south (the temperate/hemiboreal zone). The relative number of species in major habitats is highest in farmland, lakes and running waters, and possibly also in the sea. However, the absolute number of species is highest in woodland, the dominant habitat in Sweden (56% of the land area excluding sea). Within woodlands, a large proportion of species occur in southern deciduous forests, in other deciduous forests and in mixed forests, while coniferous forests are less species-rich when the habitat area is taken into account. In farmland, the most species-rich habitats are meadows and forest edges, while marshes are the most species-rich habitats amongst lakes and running waters. Nationally rare species (<1000 individuals) have a smaller European range than common species, and they also have their European distribution centres further to the south than the common species. Of the species occurring in large parts of Sweden (that is, both in the north and the south) a low proportion (4.7%) are classified as rare compared with species occurring mainly in the north (20.6% rare) or mainly in the south (31.6% rare) of Sweden. There is a positive correlation between the number of rare species and the total species number in 41 subcategory habitats, and the proportion of rare species is similar in most habitats. A more detailed analysis (including effects of both regions and habitats) suggests that the proportion of rare species in a region is a result of differences between latitudes, but also of different habitats (when corrected for latitude effects). There are differences in the proportion of rare species between the nine most species-rich orders (for example, there is a high proportion of rare species in the order Carnivora and a low proportion in the order Rodentia), but the proportion of rare species in these orders is not independent of the habitats in which they occur, making it difficult to separate the effects of habitat preferences and taxonomy on rarity. The focusing of conservation work on relatively species-rich habitats in southern and middle Sweden — such as some farmland habitats (that is, meadows and forest edges), marshes (in connection with lakes and running waters) and forests with a relatively high proportion of deciduous trees — is of high priority if the conservation of biodiversity is a main goal. These are also the habitats with a high number of rare and red-listed species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号