首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
T1 ribonuclease digestion of yeast tRNASer in the presence of seryl tRNA synthetase was used for monitoring the relationship between the substrate binding sites on the synthetase. It was found that (a) ATP displaces the tRNA from the synthetase with an effector affinity constant corresponding to the Km for ATP of 10 micron; (b) AMP and a number of nucleoside triphosphates, while influencing the rate of aminoacylation, do not displace the tRNA from the enzyme; (c) ADP and PPi inhibit the aminoacylation and the binding of tRNASer; (d) adenylyl diphosphonate is bound to the synthetase and lowers the protection of the tRNA against the nuclease attack in a similar way as does ATP; (e) interactions between the sites of L-serine and tRNASer could only be shown when both sites for serine were saturated and, in addition, the ATP analog or ADP was present. It is concluded that in seryl tRNA synthetase binding sites for ATP interact with the ones for tRNA as well as with the ones for serine. These findings contribute to the understanding of the mechanism of aminoacylation.  相似文献   

2.
Using the quenched flow technique the mechanism of seryl tRNA synthetase action has been investigated with respect to the presteady state kinetics of individual steps. Under conditions where the strong binding sites of the enzyme are nearly saturated and the steady state turnover number is about 1 s-1, rate constants of four different processes have been determined: steps connected with substrate associations are relatively slow (12 s-1 for the entire process); activation of serine is the rate determining step (about 1.2 s-1 in presence of tRNASer); whereas the transfer of serine onto tRNASer (35 s-1) and the dissociation of seryl tRNASer (70 s-1) are fast. Similar kinetic parameter seem to hold also for the steady state reactions. This conclusion is based on a detailed study of the substrate, product, and Mg2+ concentration dependence of the transfer reaction. The results also indicate that a second serine binding site is operative. Since the transfer of serine from a preformed adenylate complex onto tRNASer is fast, seryl adenylate seems to be a kinetically competent intermediate of the aminoacylation reaction although, of course, alternative mechanisms cannot be excluded.  相似文献   

3.
Lacunae of understanding exist concerning the active site organization during the charging step of the aminoacylation reaction. We present here a molecular dynamics simulation study of the dynamics of the active site organization during charging step of subclass IIa dimeric SerRS from Thermus thermophilus (ttSerRS) bound with tttRNASer and dimeric ThrRS from Escherichia coli (ecThrRS) bound with ectRNAThr. The interactions between the catalytically important loops and tRNA contribute to the change in dynamics of tRNA in free and bound states, respectively. These interactions help in the development of catalytically effective organization of the active site. The A76 end of the tttRNASer exhibits fast dynamics in free State, which is significantly slowed down within the active site bound with adenylate. The loops change their conformation via multimodal dynamics (a slow diffusive mode of nanosecond time scale and fast librational mode of dynamics in picosecond time scale). The active site residues of the motif 2 loop approach the proximal bases of tRNA and adenylate by slow diffusive motion (in nanosecond time scale) and make conformational changes of the respective side chains via ultrafast librational motion to develop precise hydrogen bond geometry. Presence of bound Mg2+ ions around tRNA and dynamically slow bound water are other common features of both aaRSs. The presence of dynamically rigid Zinc ion coordination sphere and bipartite mode of recognition of ectRNAThr are observed.  相似文献   

4.
Endothelial monocyte activating polypeptide II (EMAPII) is a cytokine that is specifically induced by apoptosis. Its precursor (pro-EMAPII) has been suggested to be identical to p43, which is associated with the multi-tRNA synthetase complex. Herein, we have demonstrated that the N-terminal domain of pro-EMAPII interacts with the N-terminal extension of human cytoplasmic arginyl-tRNA synthetase (RRS) using genetic and immunoprecipitation analyses. Aminoacylation activity of RRS was enhanced about 2.5-fold by the interaction with pro-EMAPII but not with its N- or C-terminal domains alone. The N-terminal extension of RRS was not required for enzyme activity but did mediate activity stimulation by pro-EMAPII. Pro-EMAPII reduced the apparent Km of RRS to tRNA, whereas the kcat value remained unchanged. Therefore, the precursor of EMAPII is a multi-functional protein that assists aminoacylation in normal cells and releases the functional cytokine upon apoptosis.  相似文献   

5.
The 2.2 A crystal structure of a ternary complex formed by yeast arginyl-tRNA synthetase and its cognate tRNA(Arg) in the presence of the L-arginine substrate highlights new atomic features used for specific substrate recognition. This first example of an active complex formed by a class Ia aminoacyl-tRNA synthetase and its natural cognate tRNA illustrates additional strategies used for specific tRNA selection. The enzyme specifically recognizes the D-loop and the anticodon of the tRNA, and the mutually induced fit produces a conformation of the anticodon loop never seen before. Moreover, the anticodon binding triggers conformational changes in the catalytic center of the protein. The comparison with the 2.9 A structure of a binary complex formed by yeast arginyl-tRNA synthetase and tRNA(Arg) reveals that L-arginine binding controls the correct positioning of the CCA end of the tRNA(Arg). Important structural changes induced by substrate binding are observed in the enzyme. Several key residues of the active site play multiple roles in the catalytic pathway and thus highlight the structural dynamics of the aminoacylation reaction.  相似文献   

6.
Aminoacylation reaction is the first step of protein biosynthesis. The catalytic reorganization at the active site of aminoacyl tRNA synthetases (aaRSs) is driven by the loop motions. There remain lacunae of understanding concerning the catalytic loop dynamics in aaRSs. We analyzed the functional loop dynamics in seryl tRNA synthetase from Methanopyrus kandleri (mkSerRS) and histidyl tRNA synthetases from Thermus thermophilus (ttHisRS), respectively, using molecular dynamics. Results confirm that the motif 2 loop and other active site loops are flexible spots within the catalytic domain. Catalytic residues of the loops form a network of interaction with the substrates to form a reactive state. The loops undergo transitions between closed state and open state and the relaxation of the constituent residues occurs in femtosecond to nanosecond time scale. Order parameters are higher for constituent catalytic residues which form a specific network of interaction with the substrates to form a reactive state compared to the Gly residues within the loop. The development of interaction is supported from mutation studies where the catalytic domain with mutated loop exhibits unfavorable binding energy with the substrates. During the open-close motion of the loops, the catalytic residues make relaxation by ultrafast librational motion as well as fast diffusive motion and subsequently relax rather slowly via slower diffusive motion. The Gly residues act as a hinge to facilitate the loop closing and opening by their faster relaxation behavior. The role of bound water is analyzed by comparing implicit solvent-based and explicit solvent-based simulations. Loops fail to form catalytically competent geometry in absence of water. The present result, for the first time reveals the nature of the active site loop dynamics in aaRS and their influence on catalysis.  相似文献   

7.
8.
It has been shown that heterologous aminoacylation of tRNA by tyrosyl-tRNA synthetase leads to inactivation of the enzyme. Inorganic pyrophosphatase prevents the inactivation and increases the enzyme activity and aminoacylation level in a heterologous system. A putative inactivation mechanism is discussed.  相似文献   

9.
To investigate the contribution of the discriminator base of archaeal tRNA(Thr) in aminoacylation by threonyl-tRNA synthetase (ThrRS), cross-species aminoacylation between Escherichia coli and Haloferax volcanii, halophilic archaea, was studied. It was found that E. coli ThrRS threonylated the H. volcanii tRNA(Thr) but that E. coli threonine tRNA was not aminoacylated by H. volcanii ThrRS. Results of a threonylation experiment using in vitro mutants of E. coli threonine tRNA showed that only the mutant tRNA(Thr) having U73 was threonylated by H. volcanii ThrRS. These findings indicate that the discriminator base U73 of H. volcanii tRNA(Thr) is a strong determinant for the recognition by ThrRS.  相似文献   

10.
K D Tardif  M Liu  O Vitseva  Y M Hou  J Horowitz 《Biochemistry》2001,40(27):8118-8125
Valyl-tRNA synthetase (ValRS) has difficulty discriminating between its cognate amino acid, valine, and structurally similar amino acids. To minimize translational errors, the enzyme catalyzes a tRNA-dependent editing reaction that prevents accumulation of misacylated tRNA(Val). Editing occurs with threonine, alanine, serine, and cysteine, as well as with several nonprotein amino acids. The 3'-end of tRNA plays a vital role in promoting the tRNA-dependent editing reaction. Valine tRNA having the universally conserved 3'-terminal adenosine replaced by any other nucleoside does not stimulate the editing activity of ValRS. As a result 3'-end tRNA(Val) mutants, particularly those with 3'-terminal pyrimidines, are stably misacylated with threonine, alanine, serine, and cysteine. Valyl-tRNA synthetase is unable to hydrolytically deacylate misacylated tRNA(Val) terminating in 3'-pyrimidines but does deacylate mischarged tRNA(Val) terminating in adenosine or guanosine. Evidently, a purine at position 76 of tRNA(Val) is essential for translational editing by ValRS. We also observe misacylation of wild-type and 3'-end mutants of tRNA(Val) with isoleucine. Valyl-tRNA synthetase does not edit wild-type tRNA(Val)(A76) mischarged with isoleucine, presumably because isoleucine is only poorly accommodated at the editing site of the enzyme. Misacylated mutant tRNAs as well as 3'-end-truncated tRNA(Val) are mixed noncompetitive inhibitors of the aminoacylation reaction, suggesting that ValRS, a monomeric enzyme, may bind more than one tRNA(Val) molecule. Gel-mobility-shift experiments to characterize the interaction of tRNA(Val) with the enzyme provide evidence for two tRNA binding sites on ValRS.  相似文献   

11.
12.
Mutations have been designed that disrupt the tertiary structure of yeast tRNA(Asp). The effects of these mutations on both tRNA structure and specific aspartylation by yeast aspartyl-tRNA synthetase were assayed. Mutations that disrupt tertiary interactions involving the D-stem or D-loop result in destabilization of the base-pairing in the D-stem, as monitored by nuclease digestion and chemical modification studies. These mutations also decrease the specificity constant (kcat/Km) for aspartylation by aspartyl-tRNA synthetase up to 10(3)-10(4) fold. The size of the T-loop also influences tRNA(Asp) structure and function; change of its T-loop to a tetraloop (-UUCG-) sequence results in a denatured D-stem and an almost 10(4) fold decrease of kcat/Km for aspartylation. The negative effects of these mutations on aspartylation activity are significantly alleviated by additional mutations that stabilize the D-stem. These results indicate that a critical role of tertiary structure in tRNA(Asp) for aspartylation is the maintenance of a base-paired D-stem.  相似文献   

13.
The monomeric form of the class I Escherichia coli methionine tRNA synthetase has a distinct carboxyl-terminal domain with a segment that interacts with the anticodon of methionine tRNA. This interaction is a major determinant of the specificity and efficiency of aminoacylation. The end of this carboxyl-terminal domain interacts with the amino-terminal Rossman fold that forms the site for amino acid activation. Thus, the carboxyl-terminal end may have evolved in part to integrate anticodon recognition with amino acid activation. We show here that internal deletions that disrupt the anticodon interaction have no effect on the kinetic parameters for amino acid activation. Moreover, an internally deleted enzyme can aminoacylate an RNA microhelix, which is based on the acceptor stem of methionine tRNA, with the same efficiency as the native protein. These results suggest that, in this enzyme, amino acid activation and acceptor helix aminoacylation are functionally integrated and are independent of the anticodon-binding site.  相似文献   

14.
Purpuromycin, an antibiotic produced by Actinoplanes ianthinogenes, had been reported previously to inhibit protein synthesis. In the present report, we demonstrate that the mechanism of action of this antibiotic is quite novel in that it binds with fairly high affinity to all tRNAs, inhibiting their acceptor capacity. Although more than one molecule of purpuromycin is bound to each tRNA molecule, the inhibitory activity of this antibiotic was found to be selective for the tRNA acceptor function; in fact, after the aminoacylation step, purpuromycin was found to affect none of the other tested functions of tRNA (interaction with the ribosomal P- and A-sites and interaction with translation factors). Accordingly, purpuromycin was found to inhibit protein synthesis only when translation depended on the aminoacylation of tRNA and not when the system was supplemented with pre-formed aminoacyl-tRNAs. Because purpuromycin did not interfere with the ATP-PPi exchange reaction of the synthetase or with the initial interaction of the enzyme with its tRNA substrate, the basis for the inhibition of aminoacylation is presumably the formation of a nonproductive synthetase-tRNA complex in the presence of purpuromycin in which the tRNA is unable to be charged with the corresponding amino acid.  相似文献   

15.
Lue SW  Kelley SO 《Biochemistry》2007,46(15):4466-4472
Human mitochondrial leucyl-tRNA synthetase (hs mt LeuRS) achieves high aminoacylation fidelity without a functional editing active site, representing a rare example of a class I aminoacyl-tRNA synthetase (aaRS) that does not proofread its products. Previous studies demonstrated that the enzyme achieves high selectivity by using a more specific synthetic active site that is not prone to errors under physiological conditions. Interestingly, the synthetic active site of hs mt LeuRS displays a high degree of homology with prokaryotic, lower eukaryotic, and other mitochondrial LeuRSs that are less specific. However, there is one residue that differs between hs mt and Escherichia coli LeuRSs located on a flexible closing loop near the signature KMSKS motif. Here we describe studies indicating that this particular residue (K600 in hs mt LeuRS and L570 in E. coli LeuRS) strongly impacts aminoacylation in two ways: it affects both amino acid discrimination and transfer RNA (tRNA) binding. While this residue may not be in direct contact with the amino acid or tRNA substrate, substitutions of this position in both enzymes lead to altered catalytic efficiency and perturbations to the discrimination of leucine and isoleucine. In addition, tRNA recognition and aminoacylation is affected. These findings indicate that the conformation of the synthetic active site, modulated by this residue, may be coupled to specificity and provide new insights into the origins of selectivity without editing.  相似文献   

16.
17.
It was previously shown that ALA1, the only alanyl-tRNA synthetase gene in Saccharomyces cerevisiae, codes for two functionally exclusive protein isoforms through alternative initiation at two consecutive ACG codons and an in-frame downstream AUG. We reported here the cloning and characterization of a homologous gene from Candida albicans. Functional assays show that this gene can substitute for both the cytoplasmic and mitochondrial functions of ALA1 in S. cerevisiae and codes for two distinct protein isoforms through alternative initiation from two in-frame AUG triplets 8-codons apart. Unexpectedly, although the short form acts exclusively in cytoplasm, the longer form provides function in both compartments. Similar observations are made in fractionation assays. Thus, the alanyl-tRNA synthetase gene of C. albicans has evolved an unusual pattern of translation initiation and protein partitioning and codes for protein isoforms that can aminoacylate isoaccepting tRNAs from a different species and from across cellular compartments.  相似文献   

18.
Evilia C  Hou YM 《Biochemistry》2006,45(22):6835-6845
Enzymes of halophilic organisms contain unusual peptide motifs that are absent from their mesophilic counterparts. The functions of these halophile-specific peptides are largely unknown. Here we have identified an unusual peptide that is unique to several halophile archaeal cysteinyl-tRNA synthetases (CysRS), which catalyze attachment of cysteine to tRNA(Cys) to generate the essential cysteinyl-tRNA(Cys) required for protein synthesis. This peptide is located near the active site in the catalytic domain and is highly enriched with acidic residues. In the CysRS of the extreme halophile Halobacterium species NRC-1, deletion of the peptide reduces the catalytic efficiency of aminoacylation by a factor of 100 that largely results from a defect in kcat, rather than the Km for tRNA(Cys). In contrast, maintaining the peptide length but substituting acidic residues in the peptide with neutral or basic residues has no major deleterious effect, suggesting that the acidity of the peptide is not important for the kcat of tRNA aminoacylation. Analysis of general protein structure under physiological high salt concentrations, by circular dichroism and by fluorescence titration of tRNA binding, indicates little change due to deletion of the peptide. However, the presence of the peptide confers tolerance to lower salt levels, and fluorescence analysis in 30% sucrose reveals instability of the enzyme without the peptide. We suggest that the stability associated with the peptide can be used to promote proper enzyme conformation transitions in various stages of tRNA aminoacylation that are associated with catalysis. The acquisition of the peptide by the halophilic CysRS suggests an enzyme adaptation to high salinity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号