首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Accidental cell death often leads to compensatory proliferation. In Drosophila imaginal discs, for example, gamma-irradiation induces extensive cell death, which is rapidly compensated by elevated proliferation. Excessive compensatory proliferation can be artificially induced by "undead cells" that are kept alive by inhibition of effector caspases in the presence of apoptotic stimuli. This suggests that compensatory proliferation is induced by dying cells as part of the apoptosis program. Here, we provide genetic evidence that the Drosophila initiator caspase DRONC governs both apoptosis execution and subsequent compensatory proliferation. We examined mutants of five Drosophila caspases and identified the initiator caspase DRONC and the effector caspase DRICE as crucial executioners of apoptosis. Artificial compensatory proliferation induced by coexpression of Reaper and p35 was completely suppressed in dronc mutants. Moreover, compensatory proliferation after gamma-irradiation was enhanced in drice mutants, in which DRONC is activated but the cells remain alive. These results show that the apoptotic pathway bifurcates at DRONC and that DRONC coordinates the execution of cell death and compensatory proliferation.  相似文献   

2.
In many metazoans, damaged and potentially dangerous cells are rapidly eliminated by apoptosis. In Drosophila, this is often compensated for by extraproliferation of neighboring cells, which allows the organism to tolerate considerable cell death without compromising development and body size. Despite its importance, the mechanistic basis of such compensatory proliferation remains poorly understood. Here, we show that apoptotic cells express the secretory factors wingless (wg) and decapentaplegic (dpp). When cells undergoing apoptosis were kept alive with the caspase inhibitor p35, excessive nonautonomous cell proliferation was observed. Significantly, wg signaling is necessary and, at least in some cells, also sufficient for mitogenesis under these conditions. Finally, we provide evidence that the DIAP1 antagonists reaper and hid can activate the JNK pathway and that this pathway is required for inducing wg and cell proliferation. These findings support a model where apoptotic cells activate signaling cascades for compensatory proliferation.  相似文献   

3.
In multi-cellular organisms, activation of apoptosis can trigger compensatory proliferation in surrounding cells to maintain tissue homeostasis. Genetic studies in Drosophila have indicated that distinct mechanisms of compensatory proliferation are employed in apoptotic tissues of different developmental states. In proliferating eye and wing tissues, the initiator caspase Dronc coordinates cell death and compensatory proliferation through the Jun N-terminal kinase and p53. The mitogens Decapentaplegic and Wingless are induced in this process. By contrast, in differentiating eye tissues, the effector caspases DrICE and Dcp-1 activate the Hedgehog signaling pathway to induce compensatory proliferation. In this review, we summarize these findings and discuss how activation of apoptosis is linked to the process of compensatory proliferation. The developmental and pathological relevance of compensatory proliferation is also discussed.  相似文献   

4.
CD95 (Fas/Apo-1) triggers apoptotic cell death via a caspase-dependent pathway. Inhibition of caspase activation blocks proapoptotic signaling and thus, prevents execution of apoptosis. Besides induction of apoptotic cell death, CD95 has been reported to trigger necrotic cell death in susceptible cells. In this study, we investigated the interplay between apoptotic and necrotic cell death signaling in T cells. Using the agonistic CD95 antibody, 7C11, we found that caspase inhibition mediated by the pancaspase inhibitor, zVAD-fmk, prevented CD95-triggered cell death in Jurkat T cells but not in A3.01 T cells, although typical hallmarks of apoptosis, such as DNA fragmentation or caspase activation were blocked. Moreover, the caspase-independent cell death in A3.01 cells exhibited typical signs of necrosis as detected by a rapid loss of cell membrane integrity and could be prevented by treatment with the radical scavenger butylated hydroxyanisole (BHA). Similar to CD95-induced cell death, apoptosis triggered by the DNA topoisomerase inhibitors, camptothecin or etoposide was shifted to necrosis when capsase activation was inhibited. In contrast to this, ZVAD was fully protective when apoptosis was triggered by the serpase inhibitor, Nalpha-tosyl-phenyl-chloromethyl ketone (TPCK). TPCK was not protective when administered to anti-CD95/ZVAD-treated A3.01 cells, indicating that TPCK does not possess anti-necrotic activity but fails to activate the necrotic death pathway. Our findings show (a) that caspase inhibition does not always protect apoptotic T cells from dying but merely activates a caspase-independent mode of cell death that results in necrosis and (b) that the caspase-inhibitor-induced shift from apoptotic to necrotic cell death is dependent on the cell type and the proapoptotic stimulus.  相似文献   

5.
In multicellular organisms, apoptotic cells induce compensatory proliferation of neighboring cells to maintain tissue homeostasis. In the Drosophila wing imaginal disc, dying cells trigger compensatory proliferation through secretion of the mitogens Decapentaplegic (Dpp) and Wingless (Wg). This process is under control of the initiator caspase Dronc, but not effector caspases. Here we show that a second mechanism of apoptosis-induced compensatory proliferation exists. This mechanism is dependent on effector caspases which trigger the activation of Hedgehog (Hh) signaling for compensatory proliferation. Furthermore, whereas Dpp and Wg signaling is preferentially employed in apoptotic proliferating tissues, Hh signaling is activated in differentiating eye tissues. Interestingly, effector caspases in photoreceptor neurons stimulate Hh signaling which triggers cell-cycle reentry of cells that had previously exited the cell cycle. In summary, dependent on the developmental potential of the affected tissue, different caspases trigger distinct forms of compensatory proliferation in an apparent nonapoptotic function.  相似文献   

6.
Apoptosis is a morphologically defined type of cell death associated with the activation of certain proteases belonging to the ICE/CED-3 family, known as caspases. Resistance to apoptosis has been implicated as one of the mechanisms that participates in oncogenesis. We found that the broad-spectrum peptide inhibitor of the caspases, zVAD-fmk, interferes in a dose-dependent way with all the morphological and biochemical changes associated with apoptosis induced by anti-CD95 mAb, staurosporine, VP-16 and Act-D. However, with the exception of anti-CD95-triggered apoptosis, the insulted cells lost their clonogenic potential, even when pre-treated with a high dose of zVAD-fmk. Under these circumstances, the dying cells displayed no signs of apoptosis, including activation of caspases, externalization of phosphatidylserine, nuclear condensation, or DNA fragmentation. Instead, this cell death was characterized by cytoplasmic and nuclear vacuolization followed by the loss of plasma membrane integrity. Thus, preventing the onset of apoptosis by blocking caspase activity did not rescue cells from dying in response to drugs such as staurosporine, VP-16 and Act-D. In comparison, ectopic expression of anti-apoptotic oncogenes such as bcl-2 and bcr-abl not only inhibited apoptosis but also preserved the clonogenic potential of the cells. Therefore, oncogenesis is promoted not by simply interfering with caspase-mediated apoptosis, but by preventing an upstream event which we define as the commitment point for cell death.  相似文献   

7.
8.
9.
TNF-JNK signaling is one of the highly conserved signaling pathways that regulate a broad spectrum of cellular processes including proliferation and apoptosis. Eiger, the sole homologue of TNF in Drosophila, initiates the TNF-JNK pathway to induce cell death. Previously, Deltex (Dx) has been identified as a Notch signaling component that regulates vesicular trafficking of Notch. In the present study, we have investigated the interaction between these two proteins in order to identify how Dx influences the activity of Eiger. Dx is found to act as a novel modulator of JNK-mediated cell death inducing activity of Eiger. Additionally, we observe that dx genetically interacts with eiger during wing development, and these two proteins, Dx and Eiger, colocalize in the cytoplasm. Our analysis reveals that Dx is involved in the cytoplasmic relocalization of Eiger from the cell membrane, thereby influencing Eiger-mediated JNK-activation process. Moreover, we demonstrate that Dx potentiates the activity of Eiger to downregulate Notch signaling pathway by retaining the Notch protein in the cytoplasm. Together, our findings reveal a novel role of Dx to modulate the signaling activity of Eiger and subsequent JNK-mediated cell death.  相似文献   

10.
Apaf1 is a critical molecule in the mitochondria-dependent apoptotic pathway. Here we show that Apaf1-deficient embryonic fibroblasts died at a later phase of apoptotic induction, although these cells were resistant to various apoptotic stimulants at an early phase. Neither caspase 3 activation nor nuclear condensation was observed during this cell death of Apaf1-deficient cells. Electron microscopic examination revealed that death in response to apoptotic stimulation resembled necrosis in that nuclei were round and swollen with low electron density. Necrosis-like cell death was also observed in wild-type cells treated with z-VAD-fmk. Mitochondria were not only morphologically abnormal but functionally affected, since mitochondrial transmembrane potential (DeltaPsim) was lost even in cells with intact plasma membrane integrity. These mitochondrial alterations were also observed in the wild-type cells dying of apoptosis. Combined, these data suggest that cells without caspase activation, such as Apaf1-deficient cells or cells treated with caspase inhibitors, die of necrosis-like cell death with mitochondrial damage in response to "apoptotic stimulation."  相似文献   

11.
CD137 is a member of the tumor necrosis factor/nerve growth factor receptor superfamily. Interaction of CD137 with its ligand (CD137L) affects the apoptosis, proliferation and differentiation of immune cells. Interestingly, the CD137 receptor/ligand system involves the bi-directional transduction of signals. The expression of CD137 and its ligand is not restricted to immune organs, but can also be detected in a wide variety of tissues such as the brain, kidney, lung and heart. However, its role in brain is largely unknown. This study was performed to determine the role of CD137L reverse signaling in the apoptosis of neural stem cells. We identified the expression of CD137 and its ligand in C17.2 neural stem cells derived from mouse embryonic cerebellum. We found that the activation of CD137L reverse signaling by CD137 resulted in a decrease in cell adhesion to the fibronectin-coated culture basement, thus causing detachment-induced cell death. Furthermore, we showed that the cell death induced by CD137 was completely ameliorated by integrin activators and caspase inhibitors. Therefore we suggest that CD137L reverse signaling exerts a pro-apoptotic effect by suppressing integrin-mediated survival signals in neural stem cells.  相似文献   

12.
Tissue growth during animal development depends on the coordination of cell proliferation and cell death. The EGF-receptor/MAPK, Hedgehog, Dpp, Wingless (Wg) and Notch signaling pathways have been implicated in growth control in the developing Drosophila wing. In this report, we examine the effects of Notch and Wg on growth in terms of cell proliferation and cell survival. Reduction of Wg signaling impaired compartment and clonal growth, and increased cell death. Inhibition of apoptosis in cells deficient for Wg signaling only partially rescued the clone growth defect, suggesting that Wg is also required to promote cell proliferation. This is supported by the finding that ectopic expression of Wg caused over-proliferation of cells in the proximal wing. Localized activation of Notch had non-autonomous effects on cell proliferation. However, only part of this effect was attributable to Notch-dependent induction of Wg, suggesting that other Notch-inducible signaling molecules contribute to the control of cell proliferation in the wing.  相似文献   

13.
14.
Cell death is a prominent feature of animal germline development. In Drosophila, the death of 15 nurse cells is linked to the development of each oocyte. In addition, females respond to poor environmental conditions by inducing egg chamber death prior to yolk uptake by the oocyte. To study these two forms of cell death, we analyzed caspase activity in the germline by expressing a transgene encoding a caspase cleavage site flanked by cyan fluorescent protein and yellow fluorescent protein. When expressed in ovaries undergoing starvation-induced apoptosis, this construct was an accurate reporter of caspase activity. However, dying nurse cells at the end of normal oogenesis showed no evidence of cytoplasmic caspase activity. Furthermore, although expression of the caspase inhibitors p35 or Drosophila inhibitor of apoptosis protein 1 blocked starvation-induced death, it did not affect normal nurse cell death or overall oogenesis in well-fed females. Our data suggest that caspases play no role in developmentally programmed nurse cell death.  相似文献   

15.
Regular physical activity protects against the development of breast and colon cancer, since it reduces the risk of developing these by 25-30%. During exercise, humoral factors are released from the working muscles for endocrinal signaling to other organs. We hypothesized that these myokines mediate some of the inhibitory effects of exercise on mammary cancer cell proliferation. Serum and muscles were collected from mice after an exercise bout. Incubation with exercise-conditioned serum inhibited MCF-7 cell proliferation by 52% and increased caspase activity by 54%. A similar increase in caspase activity was found after incubation of MCF-7 cells with conditioned media from electrically stimulated myotubes. PCR array analysis (CAPM-0838E; SABiosciences) revealed that seven genes were upregulated in the muscles after exercise, and of these oncostatin M (OSM) proved to inhibit MCF-7 proliferation by 42%, increase caspase activity by 46%, and induce apoptosis. Blocking OSM signaling with anti-OSM antibodies reduced the induction of caspase activity by 51%. To verify that OSM was a myokine, we showed that it was significantly upregulated in serum and in three muscles, tibialis cranialis, gastronemius, and soleus, after an exercise bout. In contrast, OSM expression remained unchanged in subcutaneous and visceral adipose tissue, liver, and spleen (mononuclear cells). We conclude that postexercise serum inhibits mammary cancer cell proliferation and induces apoptosis of these cells. We suggest that one or more myokines secreted from working muscles may be mediating this effect and that OSM is a possible candidate. These findings emphasize that role of physical activity in cancer treatment, showing a direct link between exercise-induced humoral factors and decreased tumor cell growth.  相似文献   

16.
Molecular studies of the physiological cell death process have focused attention on the role of effector caspases as critical common elements of the lethal mechanism. Diverse death signals act afferently via distinct signaling pathways to activate these resident proenzyme molecules post-translationally. Whether this molecular convergence represents the mechanistic point of irreversible commitment to cell death has not been established. That a number of caspase substrates are proteins that serve important roles in cellular homeostasis has led to the view that the acquisition of this activity must be the determinative step in cell death. Observations that caspases serve in a regulatory role to catalyze the appearance of new activities involved in orderly cellular dissolution challenge this model of death as a simple process of proteolytic destruction. We found previously that caspase-dependent nuclear cyclin dependent kinase 2 (Cdk2) activity appears to be necessary for cell death. Employing direct cytofluorimetric analyses of intracellular caspase activity and colony forming assays, we now show that transient blockade of caspase-dependent Cdk2 activity confers long-lived sparing from death on cells otherwise triggered to die and fully replete with caspase activity. These data demonstrate that caspases, while necessary for apoptosis, are not sufficient to exert lethality. Caspase activation per se does not represent an irreversible point of commitment to physiological cell death.  相似文献   

17.
Caspases function in autophagic programmed cell death in Drosophila   总被引:9,自引:0,他引:9  
Self-digestion of cytoplasmic components is the hallmark of autophagic programmed cell death. This auto-degradation appears to be distinct from what occurs in apoptotic cells that are engulfed and digested by phagocytes. Although much is known about apoptosis, far less is known about the mechanisms that regulate autophagic cell death. Here we show that autophagic cell death is regulated by steroid activation of caspases in Drosophila salivary glands. Salivary glands exhibit some morphological changes that are similar to apoptotic cells, including fragmentation of the cytoplasm, but do not appear to use phagocytes in their degradation. Changes in the levels and localization of filamentous Actin, alpha-Tubulin, alpha-Spectrin and nuclear Lamins precede salivary gland destruction, and coincide with increased levels of active Caspase 3 and a cleaved form of nuclear Lamin. Mutations in the steroid-regulated genes beta FTZ-F1, E93, BR-C and E74A that prevent salivary gland cell death possess altered levels and localization of filamentous Actin, alpha-Tubulin, alpha-Spectrin, nuclear Lamins and active Caspase 3. Inhibition of caspases, by expression of either the caspase inhibitor p35 or a dominant-negative form of the initiator caspase Dronc, is sufficient to inhibit salivary gland cell death, and prevent changes in nuclear Lamins and alpha-Tubulin, but not to prevent the reorganization of filamentous Actin. These studies suggest that aspects of the cytoskeleton may be required for changes in dying salivary glands. Furthermore, caspases are not only used during apoptosis, but also function in the regulation of autophagic cell death.  相似文献   

18.
Effective execution of apoptosis requires the activation of caspases. However, in many cases, broad-range caspase inhibitors such as Z-VAD.fmk do not inhibit cell death because death signaling continues via basal caspase activities or caspase-independent processes. Although death mediators acting under caspase-inhibiting conditions have been identified, it remains unknown whether they trigger a physiologically relevant cell death that shows typical signs of apoptosis, including phosphatidylserine (PS) exposure and the removal of apoptotic cells by phagocytosis. Here we show that cells treated with ER stress drugs or deprived of IL-3 still show hallmarks of apoptosis such as cell shrinkage, membrane blebbing, mitochondrial release of cytochrome c, PS exposure and phagocytosis in the presence of Z-VAD.fmk. Cotreatment of the stressed cells with Z-VAD.fmk and the serine protease inhibitor Pefabloc (AEBSF) inhibited all these events, indicating that serine proteases mediated the apoptosis-like cell death and phagocytosis under these conditions. The serine proteases were found to act upstream of an increase in mitochondrial membrane permeability as opposed to the serine protease Omi/HtrA2 which is released from mitochondria at a later stage. Thus, despite caspase inhibition or basal caspase activities, cells can still be phagocytosed and killed in an apoptosis-like fashion by a serine protease-mediated mechanism that damages the mitochondrial membrane.  相似文献   

19.
BACKGROUND: To survive starvation and other forms of stress, eukaryotic cells undergo a lysosomal process of cytoplasmic degradation known as autophagy. Autophagy has been implicated in a number of cellular and developmental processes, including cell-growth control and programmed cell death. However, direct evidence of a causal role for autophagy in these processes is lacking, resulting in part from the pleiotropic effects of signaling molecules such as TOR that regulate autophagy. Here, we circumvent this difficulty by directly manipulating autophagy rates in Drosophila through the autophagy-specific protein kinase Atg1. RESULTS: We find that overexpression of Atg1 is sufficient to induce high levels of autophagy, the first such demonstration among wild-type Atg proteins. In contrast to findings in yeast, induction of autophagy by Atg1 is dependent on its kinase activity. We find that cells with high levels of Atg1-induced autophagy are rapidly eliminated, demonstrating that autophagy is capable of inducing cell death. However, this cell death is caspase dependent and displays DNA fragmentation, suggesting that autophagy represents an alternative induction of apoptosis, rather than a distinct form of cell death. In addition, we demonstrate that Atg1-induced autophagy strongly inhibits cell growth and that Atg1 mutant cells have a relative growth advantage under conditions of reduced TOR signaling. Finally, we show that Atg1 expression results in negative feedback on the activity of TOR itself. CONCLUSIONS: Our results reveal a central role for Atg1 in mounting a coordinated autophagic response and demonstrate that autophagy has the capacity to induce cell death. Furthermore, this work identifies autophagy as a critical mechanism by which inhibition of TOR signaling leads to reduced cell growth.  相似文献   

20.
Exposure of neurons to H(2)O(2) results in both necrosis and apoptosis. Caspases play a pivotal role in apoptosis, but exactly how they are involved in H(2)O(2)-mediated cell death is unknown. We examined H(2)O(2)-induced toxicity in neuronal PC12 cells and the effects of inducible overexpression of the H(2)O(2)-scavenging enzyme catalase on this process. H(2)O(2) caused cell death in a time- and concentration-dependent manner. Cell death induced by H(2)O(2) was found to be mediated in part through an apoptotic pathway as H(2)O(2)-treated cells exhibited cell shrinkage, nuclear condensation and marked DNA fragmentation. H(2)O(2) also triggered activation of caspase 3. Genetic up-regulation of catalase not only significantly reduced cell death but also suppressed caspase 3 activity and DNA fragmentation. While the caspase 3 inhibitor DEVD inhibited both caspase 3 activity and DNA fragmentation induced by H(2)O(2) it did not prevent cell death. Treatment with the general caspase inhibitor ZVAD, however, resulted in complete attenuation of H(2)O(2)-mediated cellular toxicity. These results suggest that DNA fragmentation induced by H(2)O(2) is attributable to caspase 3 activation and that H(2)O(2) may be critical for signaling leading to apoptosis. However, unlike inducibly increased catalase expression and general caspase inhibition both of which protect cells from cytotoxicity, caspase 3 inhibition alone did not improve cell survival suggesting that prevention of DNA fragmentation is insufficient to prevent H(2)O(2)-mediated cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号