首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Culture of protoplast using cotyledon and hypocotyl as the donor tissue from true potato seedlings (TPSs) of 3 breeding lines (DTO-33, ND 860-2 and BN 9815-3) of Solanum tuberosum L. was studied. The cotyledons and hypocotyls of TPSs just extended were excised and digested in an enzyme solution containing 1 % cellulase and 0. 5 % macerozyme for 17—20 h after vacuum infiltration of the tissue in the solution. The protoplasts were cultured in an improved liquid medium and transferred onto solid media for callus culture and shoot regeneration. Some factors affecting the efficiency of cotyledon and hypocotyl protoplast culture were studied. The results showed that using the cotyledons and hypocotyls as donor tissues for protoplast isolation and culture in potato, the division frequency of protoplast derived cells was significantly higher than that using the leaves and shoot-tips of the test-tube plantlets: the yield and quality of the protoplast from TPSs cultured under continuous high light intensity (3000 Ix) were much higher than the TPSs cultured under low light intensity (1000 Ix), and no intact protoplast was ever obtained from the TPSs cultured in continuous dark condition. Vacuum infiltration of the cotyledon and hypocotyl segments in enzyme solution before digestion increased protoplast yield. The yield of protoplasts from hypocotyl tissue was significantly higher than from the cotyledon, but there was no significant difference in quality between the protoplast derived from the two tissues. The significance, advantages and shortcomings of using the cotyledons and hypocotyls as the donor tissues for isolation and culture of potato protoplasts are dicussed.  相似文献   

2.
Cotyledons of sunflower seedlings ( Helianthus annuus L. cv. Giant gray stripe) expand and their protein content first rises then begins to decrease during the first three days of growth. Storage protein structures, which are visible with scanning electron microscopy, undergo modification that leads to storage protein disappearance by day 4 post-imbibition. Expansion of cotyledons detached from seeds prior to imbibition is greatly reduced, total protein levels remain high, and storage protein structures remain visible in cells of these cotyledons. Incubation of excised cotyledons in 1.0 μM benzyladenine or kinetin increases the rates of cotyledon expansion and storage protein loss to levels higher than in intact seedling cotyledons, Incubation in 10 μM indole-3-acetic acid inhibits cotyledon expansion and protein mobilization. More rapid hydrolysis of storage proteins in cotyledons of intact seedlings or detached cotyledons treated with cytokinin is further indicated in day 2 specimens by SDS-polyacrylamide gel electrophoresis. These results suggest a possible mechanism for regulation of cotyledon development by interactions of the promotive effects of cytokinin and inhibitory effects of auxin.  相似文献   

3.
Optimisation of Protoplast Production in White Lupin   总被引:1,自引:0,他引:1  
The influence, was investigated, of abiotic parameters on the isolation of protoplasts from in vitro seedling cotyledons of white lupin. The protoplasts were found to be competent in withstanding a wide range of osmotic potentials of the enzyme medium, however, −2.25 MPa (0.5 M mannitol), resulted in the highest yield of protoplasts. The pH of the isolation medium also had a profound effect on protoplast production. Vacuum infiltration of the enzyme solution into the cotyledon tissue resulted in a progressive drop in the yield of protoplasts. The speed and duration of orbital agitation of the cotyledon tissue played a significant role in the release of protoplasts and a two step (stationary-gyratory) regime was found to be better than the gyratory-only system. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Label and mitotic indices and microspectrophotometry of unlabeled interphase cells were used to measure the proportion of root meristem cells of Pisum sativum in each cell cycle stage after exposure to protracted gamma irradiation. Three seedling types were investigated: 1) intact seedlings, 2) seedlings with cotyledons detached and treated with lanolin paste applied to the area of cotyledon excision, and 3) seedlings with detached cotyledons and treated with a G2 Factor applied to the area of cotyledon excision in lanolin paste. In intact seedling meristems, predominant cell arrest occurred with a 4C amount of DNA while 0.30 of the cells underwent endoreduplication to arrest with an 8C amount of DNA. Only 0.07 cells arrested with a 2C amount of DNA. Polyploid cells were produced several days after the start of irradiation and were derived from a diploid cell population. In seedlings exposed to lanolin only, without cotyledons, most cells arrested with a 2C amount of DNA with no polyploid cells. In seedlings exposed to a G2 Factor in lanolin after cotyledon excision, most cells arrested with a 4C amount of DNA but no cells underwent endoreduplication. These experimental results suggest that the G2 Factor derived from cotyledons of Pisum sativum was necessary for predominant cell arrest in G2 but alone was not sufficient for the polyploidization step.  相似文献   

5.
以沙冬青(Ammopiptanthus mongolicus(Maxim.ex Kom.)Cheng f.)幼苗的子叶为材料,对其原生质体的分离、纯化和瞬时表达体系进行了研究。结果表明,子叶原生质体分离的最佳酶解液组成为CPW溶液+3.0%纤维素酶R-10+0.5%离析酶R-10+0.3%半纤维素酶+9.0%甘露醇(p H5.8);最佳酶解条件为室温、避光、40 r/min轻摇14 h。采用W5溶液作为漂洗液将酶解物稀释后进行过滤,将过滤液在4℃、700 r/min条件下离心5 min,所得纯化原生质体的产量约为2.50×106cells/g,活力达到90%;以纯化的原生质体作为受体,利用聚乙二醇(PEG)介导法成功将植物瞬时表达载体p BI-GFP导入其中,转化效率达到50.8%。利用本研究建立的原生质体瞬时表达体系,检测到沙冬青脱水应答转录因子Am DREB1定位于细胞核内。  相似文献   

6.
Cotyledons of gourd (Cucurbita maxima Duchesne) and bean (Phaseolus vulgaris L.) were used to study the changes in the activities of catalase, peroxidase, acid inorganic pyrophosphatase and alkaline inorganic pyrophosphatase during ageing and the diversion in such changes that occur when cotyledon senescence was retarded by detopping the seedlings above the cotyledons. Catalase, acid inorganic pyrophosphatase and alkaline inorganic pyrophosphatase activities declined during the senescence of the cotyledons. When cotyledon senescence was retarded by detopping as marked by the increase in the levels of chlorophyll and protein, there was also an increase in the activities of these enzymes. Peroxidase activity, on the other hand, increased during the senescence of the cotyledons and detopping the seedlings resulted in a further increase in the peroxidase activity. It can be suggested that some root factor(s) probably cytokinin(s) is (are) mobilised into the cotyledons of the detopped seedlings which otherwise would have been mobilised into the shoot apices, and help retard or even reverse the senescence of the cotyledons.  相似文献   

7.
霸王的原生质体培养的研究   总被引:1,自引:0,他引:1  
张改娜  施江 《生物技术》2009,19(5):78-80
目的:为利用原生质体融合技术转移霸王抗旱基因。方法:采用酶解法分离霸王原生质体,比较了霸王子叶和愈伤组织游离原生质体的产量和活力,不同渗透压和起始密度对原生质体分裂频率的影响。结果:愈伤组织游离的原生质体产量和活力均高于子叶,原生质体产率可达2.4×106个/g.FW,活力达89%。采用液体浅层培养,在附加2,4-D(2mg/L)、6-BA(1.0mg/L)、2%蔗糖和甘露醇(0.4mol/L)的DPD培养基中,原生质体分裂频率最高,达68.6%。转移到附加2-iP(3mg/L)、KT(1.0mg/L)、6-BA(1.0mg/L)的分化培养基上,获得2个再生苗。结论:采用酶解法游离霸王愈伤组织,可获得高活力和高分裂频率的霸王原生质体。  相似文献   

8.
影响决明无菌苗子叶原生质体分离和培养因素的研究   总被引:1,自引:0,他引:1  
以决明(Cassia obtusi folia)无菌苗子叶为材料,对酶组合、无菌苗日龄,植物激素组合和培养方法对其原生质体的分离和培养的影响进行了研究。结果表明:用3%的纤维素酶和0.2%Pectinase Y-23的酶组合处理决明无菌苗子叶块8小时可以高效分离出有活力的原生质体;约14日龄的决明无菌苗子叶比较适合于原生质体的分离;适当浓度的2,4-D 有利于原生质体的分离。促进原生质体分裂的理想的植物激素组合为0.4 mg/L 2,4-D,1.0 mg/L NAA and 0.1 mg/L KT;漂浮培养法最有利于原生质体的分裂和发育。找出了适合于决明无菌苗子叶原生质体的分离和培养的酶组合、植物激索组合、有效培养方法和决明无菌苗子叶日龄。这为有效地从决明无菌苗子叶原生质体再生植株奠定了基础。  相似文献   

9.
The photosynthetic performances of regenerated protoplasts of Bryopsis hypnoides, which were incubated in seawater for 1, 6, 12, and 24 h, were studied using chlorophyll (Chl) fluorescence and oxygen measurements. Results showed that for the regenerated protoplasts, the pigment content, the ratios of photosynthetic rate to respiration rate, the maximal photosystem II (PSII) quantum yield (Fv/Fm), and the effective PSII quantum yield (ΦPSII) decreased gradually along with the regeneration progress, indicated that during 24 h of regeneration there was a remarkable reduction in PSII activity of those newly formed protoplasts. We assumed that during the cultivation progress the regenerated protoplasts had different photosynthetic vigor, with only some of them able to germinate and develop into mature thalli. The above results only reflected the photosynthetic features of the regenerated protoplasts at each time point as a whole, rather than the actual photosynthetic activity of individual aggregations. Further investigation suggested a relationship between the size of regenerated protoplasts and their viability. The results showed that the middle-sized group (diameter 20–60 μm) retained the largest number of protoplasts for 24 h of growth. The changes in Fv/Fm and ΦPSII of the four groups of differently sized protoplasts (i.e. < 20, 20–60, 60–100, and > 100 μm) revealed that the protoplasts 20–60 μm in diameter had the highest potential activity of the photosynthetic light energy absorption and conversion for several hours.  相似文献   

10.
A protocol was developed for the isolation and culture of protoplasts from the cotyledons of seedlings of Pinus coulteri D. Don. Incubation of cotyledon pieces in a mixture consisting of cellulase Onozuka R10 2%, Pectolyase Y-23 0.1%, mannitol 10%, CaCl2 500 mg/l and other macro and micro-nutrients yielded viable protoplasts. After 24 hours of culture in a complex nutrient medium, the protoplasts regenerated new cell walls and the first divisions were observed within 7–10 days. Small cell colonies were formed within 15–20 days, but these started to accumulate phenolics and no further growth of the colonies was observed.  相似文献   

11.
Protoplasts from Olea europaea L. have been compared in terms of their yield, viability, cell division and callus differentiation. Viable protoplasts were isolated from in vitro cultured leaves and cotyledons by an overnight incubation in an enzyme solution containing 1–1.5% driselase and 0.5M sucrose. This method allowed high yield of purified protoplasts, which floated and formed a dark green band at the meniscus, after centrifugation. Purified protoplasts were diluted to 3×104 protoplasts·ml–1 in culture medium. After cell wall regeneration, protoplasts gradually increased their volumes under appropriate conditions. The first divisions occurred during the second week in culture. Division efficiency ranged from 5.2 to 9.8% after 20 days in culture. Two weeks later visible microcolonies developed only from cotyledon protoplasts. After 6 weeks in culture, the microcalli were transferred to a solidified culture medium with 0.6% agarose, which induced active callus growth.Abbreviations OM olive proliferation medium, Rugini 1984 - Omg OM for the germination of olive embryos - OMr=OM for root induction - OMp=OM for protoplasts - OMc=OM for callus - BN Bourgin and Nitsch medium 1967 - IBA indol-3-butyric acid - NAA naphthalene acetic acid - 2,4-D dichlorophenoxyacetic acid.  相似文献   

12.
High yield isolation of mesophyll protoplasts from wheat, barley and rye   总被引:1,自引:0,他引:1  
Efficient procedures are described for high-yield isolation of mesophyll protoplasts from spring wheat ( Triticum aestivum L. cv. Glenlea), winter wheat ( Triticum aestivum L. cv. Frederick), barley ( Hordeum vulgare L. cv. Bruce) and rye ( Secale cereale L. cv. Puma). Factors such as plant age, composition of the incubation medium during isolation, purification procedures and culture medium affect protoplast yield, viability and metabolic competence, as measured by light-dependent CO2 fixation. Optimal osmolarity of the isolation medium was equivalent to 1.8 times that measured in the leaves of all plant material used. The presence of 2 m M ascorbic acid in the preincubation and isolation medium increased the yield by 50% and conserved viability and metabolic competence. The protoplasts were stable for up to 48 h without loss of either viability or of original activity of CO2 fixation, which was in the order of 100 μmol CO2 (mg chl)−1h−1.
In our MC-56 liquid medium these protoplasts regenerated cell walls within 72 h and a few divided.  相似文献   

13.
High yields (2.3 × 105 to 1.3 × 106 protoplasts/g.f.wt.) of isolated protoplasts were obtained from cotyledons of Cirus sinensis (L.) Osb. 'Valencia'. Osmotic potential of the medium and enzyme concentrations were important in obtaining high viability of preparations as indicated by FDA fluorescence. Adding malt extract to a Murashige-Tucker basal medium increased plating efficiencies somewhat, but not the rate or duration of cell division. However, modifying the NAA and kinetin concentration optimized plating efficiencies (up to 20%) of protoplasts and also the rate or duration of cell division. The highest plating efficiency and number of cells per colony were obtained on a defined medium containing NAA (15 μ M ). and kinetin (4.6 μ M ). Coincidence of percentage protoplast viability after 13 days (assessed by FDA fluorescence) with plating efficiency after 21 days indicates that FDA fluorescence is an accurate indicator of citrus protoplast viability.  相似文献   

14.
Summary A method has been developed for the reuse of cell wall digesting enzymes to isolate protoplasts from actively-growing suspension cultures of plant cells. Protoplasts could be satisfactorily prepared as many as three times using the same enzyme mixture without any loss in yield or viability of the isolated protoplasts. The yields of nuclei isolated from protoplasts prepared with used enzyme solution were comparable to those obtained with fresh enzymes.  相似文献   

15.
In cotyledons of germinating cotton (Gossypium hirsutum L. var. Stoneville 213) seedlings, in the dark, isocitric lyase (EC 4.1.3.1) activity peaks after 2 days and thereafter slowly declines to a negligible value after 8 days. The maximum activity of this enzyme in cotyledons of 2-day-old seedlings was 16.2 μmoles of glyoxylate formed/15 min·10 cotyledon pairs. Actinomycin D at a concentration of 10 μg/ml, if added to the imbibing solution, completely prevents the development of isocitric lyase activity in these germinating seed. In cotyledons of germinating cotton seedlings, in the light, isocitric lyase activity peaks after 2 to 3 days and sharply declines to a negligible value after 4 days. The maximum activity of this enzyme in cotyledons of 2- to 3-day-old seedlings was 13.2 μmoles of glyoxylate formed/15 min·10 cotyledon pairs. Actinomycin D at a concentration of 10 μg/ml, if added to the imbibing solution, severely inhibits the development of enzyme activity.  相似文献   

16.
The inhibitors of cytokinin N-glucosylation are known to influence the growth of some plant objects including cotyledons. The use of the plate meristem of zucchini cotyledon as an experimental system allowed us to study for the first time the way in which the changes in the cell division are integrated in this growth reaction. Roscovitine, a potent inhibitor of cytokinin N-glucosylation and cycline-dependent kinases, did not show to have an effect on the meristem activity when applied in 100 μM to cultivated zucchini cotyledons, and acted as an inhibitor in concentrations higher than 400 μM. A 200 μM roscovitine stimulated both palisade cell division and growth. In different seed batches, 400 μM roscovitine acted as a stimulator or an inhibitor. A much stronger stimulating effect on growth and cell division was observed after application of benzyladenine (BA, 10 μM). In contrast to BA, roscovitine provoked a formation of principally flat lamina. In combined treatments, it lowered the stimulating effect of BA; 400 μM roscovitine combined with BA severely suppressed the growth and division activity. This cellular behavior and changes in cotyledon growth could be due to the roscovitine-provoked changes in endogenous cytokinin levels via the inhibition of cytokinin N-glucosylation. Roscovitine-caused stimulation of cell growth and division is stronger in the marginal meristem than that registered in central regions of the cotyledon blade. In this region it also changed the pattern of cell division and lowered the adhesion between the clusters, which enhanced the appearance of local ruptures of the cotyledon edges. The first palisade layer of the plate meristem of cultured zucchini cotyledons, the natural mono-layer of proliferating palisade cells, may be used for screening the inhibitors of cycline-dependent kinases and cytokinin N-glucosylation with regard to their effects on cell division and growth.  相似文献   

17.
We elucidated the relationship between cell proliferation and somatic embryogenesis in the culture of carrot cotyledons. Fresh weights of the cotyledon expiants were determined every five days while being cultured on a medium containing 2,4-D. Callus production increased exponentially from Day 20 to Day 25, showing a two-fold rate of proliferation. To examine the embryogenic potential of the callus, we pre-cultured cotyledon explants on an MS medium with 2,4-D, then transferred them to an MS basal medium at five-day intervals. Somatic embryos formed most frequently when the cotyledons were pre-cultured for 20 days on an MS medium that contained 5 μ2,4-D. The frequency of somatic embryo formation was 81%, while that of normal embryos with two cotyledons was 51% among those formed on a hormone-free medium. We used FACScan analysis to relate the embryogenic potential of the callus to the S phase in the cell cycle of cultured cells. The S phase was high after 25 days of culture on the medium with 5 μM 2,4-D. In contrast, the frequency of normal embryogenesis was higher at Day 20 of the pre-culture period. Culturing embryogenic calli on a medium with 5 μM 2,4-D was most favorable for producing somatic embryos with two cotyledons. We verified that active somatic embryogenesis was apparently related to cell division activity; somatic embryos induced from actively dividing cells were apt to accompany cotyledonary abnormality.  相似文献   

18.
The presence of S-alkyl cysteine lyases was established in germinating seedlings of Acacia georginae and Albizzia julibrissin. The enzymes were present in both the cotyledons and the radicle (hypocotyl and root). The specific activity of enzyme in the latter organ was much higher than in the cotyledon. The lyase of each species showed greater affinity for those alkyl cysteine derivatives peculiar to the particular species.  相似文献   

19.
Biochemical, electrophoretic and immunological studies were made among peroxisomal enzymes in three organs of soybean [Glycine max (L.) Merr. cv. Centennial] to compare the enzyme distribution and characteristics of specialized peroxisomes in one species. Leaves, nodules and etiolated cotyledons were compared with regard to several enzymes localized solely in their peroxisomes: catalase (EC 1.11.1.6), malate synthase (EC 4.1.3.2), glycolate oxidase (EC 1.1.3.1), and urate oxidase (EC 1.7.3.3). Catalase activity was found in all tissue extracts. Electrophoresis on native polyacrylamide gels indicated that leaf catalase migrated more anodally than nodule or cotyledon catalase as shown by both activity staining and Western blotting. Malate synthase activity and immunologically detectable protein were present only in the cotyledon extracts. Western blots of denaturing (lithium dodecyl sulfate) gels probed with anti-cotton malate synthase antiserum, reveal a single subunit of 63 kDa in both cotton and soybean cotyledons. Glycolic acid oxidase activity was present in all three organs, but ca 20-fold lower (per mg protein) in both nodule and cotyledon extracts compared to leaf extracts. Electrophoresis followed by activity staining on native gels indicated one enzyme form with the same mobility in nodule, cotyledon and leaf preparations. Urate oxidase activity was found in nodule extracts only. Native gel electrophoresis showed a single band of activity. Novel electrophoretic systems had to be developed to resolve the urate oxidase and glycolate oxidase activities; both of these enzymes moved cathodally in the gel system employed while most other proteins moved anodally. This multifaceted study of enzymes located within three specialized types of peroxisomes in a single species has not been undertaken previously, and the results indicate that previous comparisons between the enzyme content of specialized peroxisomes from different organisms are mostly consistent with that for a single species, soybean.  相似文献   

20.
The period during which cucumber cotyledons function purelyas storage organs is very brief and this role is supplementedand superseded shortly after emergence by their photosyntheticfunction. Inhibition of cotyledon photosynthesis by DCMU duringthe early post emergence phase prevented further plumule developmentalthough some cotyledon expansion still took place before seedlingdeath occurred. Seedlings did not survive DCMU application tothe cotyledons if the treatment was made before the first leafwas expanded. Reduction of the incident light intensity at the cotyledon surfaceto about 10 per cent of the control reduced the rate of growthof the seedlings but they did not die. Shading one cotyledonsubstantially reduced the weight and area of that cotyledonand of the seedling as a whole. There was little indicationthat the untreated cotyledon either increased its photosyntheticrate or its output of photosynthate-nor did it supply the inhibitedcotyledon with assimilates. There was some indication that sucroseapplied to the cotyledon surface was able to compensate forlight to a small extent especially when only one cotyledon wasshaded. However, in full light, sucrose tended to be inhibitory. After emergence cotyledon reserves are sufficient only for limitedcotyledon development. Survival and growth of the seedling beyondthis stage is dependent upon cotyledon photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号