首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In Alzheimer's disease (AD) one finds increased deposition of A beta and also an increased presence of monocytes/macrophages in the vessel wall and activated microglial cells in the brain. AD patients show increased levels of proinflammatory cytokines by activated microglia. Here we used a human monocytic THP-1 cell line as a model for microglia to delineate the cellular signaling mechanism involved in amyloid peptides (A beta(1-40) and A beta(1-42))-induced expression of inflammatory cytokines and chemokines. We observed that A beta peptides at physiological concentrations (125 nM) increased mRNA expression of cytokines (TNF-alpha, and IL-1 beta) and chemokines (monocyte chemoattractant protein-1 (MCP-1), IL-8, and macrophage inflammatory protein-1 beta (MIP-1 beta)). The cellular signaling involved activation of c-Raf, extracellular signal-regulated kinase-1 (ERK-1)/ERK-2, and c-Jun N-terminal kinase, but not p38 mitogen-activated protein kinase. This is further supported by the data showing that A beta causes phosphorylation of ERK-1/ERK-2, which, in turn, activates Elk-1. Furthermore, A beta mediated a time-dependent increase in DNA binding activity of early growth response-1 (Egr-1) and AP-1, but not of NF-kappa B and CREB. Moreover, A beta-induced Egr-1 DNA binding activity was reduced >60% in THP-1 cells transfected with small interfering RNA duplexes for Egr-1 mRNA. We show that A beta-induced expression of TNF-alpha, IL-1 beta, MCP-1, IL-8, and MIP-1 beta was abrogated in Egr-1 small inhibitory RNA-transfected cells. Our results indicate that A beta-induced expression of cytokines (TNF-alpha and IL-1 beta) and chemokines (MCP-1, IL-8, and MIP-1 beta) in THP-1 monocytes involves activation of ERK-1/ERK-2 and downstream activation of Egr-1. The inhibition of Egr-1 by Egr-1 small inhibitory RNA may represent a potential therapeutic target to ameliorate the inflammation and progression of AD.  相似文献   

3.
Choi EK  Park HJ  Ma JS  Lee HC  Kang HC  Kim BG  Kang IC 《FEBS letters》2004,559(1-3):141-144
The effects of LY294002 (LY29) and wortmannin (WM), inhibitors of phosphatidylinositol 3-kinase (PI3K), on monocyte chemoattractant protein-1 (MCP-1) expression by human umbilical vein endothelial cells were investigated. Complete inhibition of interleukin (IL)-1beta-induced Akt phosphorylation occurred at 50 microM LY29 or 100 nM WM. At these concentrations, LY29, but not WM, significantly inhibited constitutive and IL-1beta-induced MCP-1 expression at both protein and mRNA levels. LY303511 (LY30), an inactive analogue of LY29, also inhibited MCP-1 expression. LY29 and LY30 inhibited activation of nuclear factor-kappaB (NF-kappaB). These results suggest that LY29 inhibits MCP-1 expression at least in part via suppression of NF-kappaB, independent of PI3K, and the structure of LY29 and LY30 may be a novel template for development of new anti-inflammatory drugs.  相似文献   

4.
5.
6.
7.
It has been shown that oxidized low-density lipoprotein (ox-LDL), through the activation of glomerular cells, stimulates pathobiological processes involved in monocyte infiltration into the mesangium. The underlying molecular mechanisms are not fully understood. The present study showed that ox-LDL strongly induced AP-1 binding activity in rat mesangial cells (RMCs) in a dose- and time-dependent manner, reaching the maximal activation at 250 microg ml(-1) within 24 h. The results from mobility shift assays and Western blotting analysis revealed that this AP-1 binding increase involved c-Jun, but not c-Fos. Moreover, this ox-LDL-increased AP-1 binding was inhibited by several protein kinase (PK) inhibitors: the protein kinase C (PKC) inhibitor Bisindolylmaleimide I, the cAMP-dependent PK (PKA) inhibitor H89, and the tyrosine PK (PTK) inhibitor genistein. Protein phosphorylation represents mitogen-activated protein kinase (MAPK) activity. Therefore, we examined the role of ox-LDL on the activation of mesangial cell JNK/SAPK, the only recognized protein kinase that catalyses phosphorylation of c-Jun. The incubation of mesangial cells with ox-LDL induced phosphorylation of JNK1/SAPK dose dependently, with the maximal response at 150 microg ml(-1). This study demonstrates that multiple kinase activities are involved in the mechanism of ox-LDL-induced AP-1 activation in mesangial cells, and ox-LDL stimulates AP-1 through JNK-c-Jun other than MEK-c-Fos signalling pathway.  相似文献   

8.
9.
Cytokine signaling involves the participation of many adaptor proteins, including the docking protein TNF receptor-associated factor-2 (TRAF-2), which is believed to transmit the TNF-alpha signal through both the I kappa B/NF-kappa B and c-Jun N-terminal kinase (JNK)/stress-related protein kinase (SAPK) pathways. The physiological role of TRAF proteins in cytokine signaling in intestinal epithelial cells (IEC) is unknown. We characterized the effect of a dominant-negative TRAF-2 delivered by an adenoviral vector (Ad5dnTRAF-2) on the cytokine signaling cascade in several IEC and also investigated whether inhibiting the TRAF-2-transmitting signal blocked TNF-alpha-induced NF-kappa B and IL-8 gene expression. A high efficacy and level of Ad5dnTRAF-2 gene transfer were obtained in IEC using a multiplicity of infection of 50. Ad5dnTRAF-2 expression prevented TNF-alpha-induced, but not IL-1 beta-induced, I kappa B alpha degradation and NF-kappa B activation in NIH-3T3 and IEC-6 cells. TNF-alpha-induced JNK activation was also inhibited in Ad5dnTRAF-2-infected HT-29 cells. Induction of IL-8 gene expression by TNF-alpha was partially inhibited in Ad5dnTRAF-2-transfected HT-29, but not in control Ad5LacZ-infected, cells. Surprisingly, IL-1 beta-mediated IL-8 gene expression was also inhibited in HT-29 cells as measured by Northern blot and ELISA. We concluded that TRAF-2 is partially involved in TNF-alpha-mediated signaling through I kappa B/NF-kappa B in IEC. In addition, our data suggest that TRAF-2 is involved in IL-1 beta signaling in HT-29 cells. Manipulation of cytokine signaling pathways represents a new approach for inhibiting proinflammatory gene expression in IEC.  相似文献   

10.
Bone morphogenetic protein-7 (BMP-7) protects kidneys from diabetic nephropathy (DN), and high glucose (HG)-induced oxidative stress is involved in DN. We investigated the antioxidative ability of BMP-7 using HG-treated mesangial cells. We treated rat mesangial cells (RMCs) with recombinant human BMP-7 (rhBMP-7) and examined changes in reactive oxygen species (ROS) levels and intracellular signals in response to HG-induced oxidative stress. rhBMP-7 decreased the level of ROS in HG-treated RMCs. In contrast, lowering endogenous BMP-7 by siRNA or BMP receptor II (BMP-RII) by anti-BMP-RII antibodies increased the level of ROS in HG-treated RMCs. rhBMP-7 increased Smad-1,5,8 phosphorylation, decreased PKCζ and c-Jun N-terminal kinase (JNK) phosphorylation, and decreased fibronectin and collagen IV synthesis in HG-treated RMCs. In conclusion, we found that BMP-7 could protect mesangial cells from HG-induced oxidative stress by activating BMP-RII. The antioxidative activity of BMP-7 was primarily due to inhibition of PKCζ, JNK phosphorylation, and c-jun activation.  相似文献   

11.
Mitogen-activated protein (MAP) kinases have been suggested as potential mediators for interleukin 1beta (IL-1beta)-induced gene activation. This study investigated the role of the MAP kinases p38 and ERK2 in IL-1beta-mediated expression of the chemokine MCP-1 by human mesangial cells. Phosphorylation of p38 kinase, which is necessary for activation, increased significantly after IL-1beta treatment. p38 kinase immunoprecipitated from IL-1beta-treated cells phosphorylated target substrates to a greater extent than p38 kinase from controls. SB 203580, a selective p38 kinase inhibitor, was used to examine the role of p38 kinase in MCP-1 expression. SB 203580 decreased IL-1beta-induced MCP-1 mRNA and protein levels, but did not affect MCP-1 mRNA stability. Because NF-kappaB is necessary for MCP-1 gene expression, the effect of p38 kinase inhibition on IL-1beta induction of NF-kappaB was measured. SB 203580 (up to 25 microM) had no effect on IL-1beta-induced NF-kappaB nuclear translocation or DNA binding activity. Our previous work showed that IL-1beta also activates the MAP kinase ERK2 in human mesangial cells. PD 098059, a selective inhibitor of the ERK activating kinase MEK1, had no effect on IL-1beta-induced MCP-1 mRNA or protein levels, or on IL-1beta activation of NF-kappaB. These data indicate that p38 kinase is necessary for the induction of MCP-1 expression by IL-1beta, but is not involved at the level of cytoplasmic activation of NF-kappaB. In contrast, ERK2 does not mediate IL-1beta induced MCP-1 gene expression.  相似文献   

12.
13.
HIV-tat protein, like TNF, activates a wide variety of cellular responses, including NF-kappa B, AP-1, c-Jun N-terminal kinase (JNK), and apoptosis. Whether HIV-tat transduces these signals through the same mechanism as TNF is not known. In the present study we investigated the role of the T cell-specific tyrosine kinase p56lck in HIV-tat and TNF-mediated cellular responses by comparing the responses of Jurkat T cells with JCaM1 cells, an isogeneic lck-deficient T cell line. Treatment with HIV-tat protein activated NF-kappa B, degraded I kappa B alpha, and induced NF-kappa B-dependent reporter gene expression in a time-dependent manner in Jurkat cells but not in JCaM1 cells, suggesting the critical role of p56lck kinase. These effects were specific to HIV-tat, as activation of NF-kappa B by PMA, LPS, H2O2, and TNF was minimally affected. p56lck was also found to be required for HIV-tat-induced but not TNF-induced AP-1 activation. Similarly, HIV-tat activated the protein kinases JNK and mitogen-activated protein kinase kinase in Jurkat cells but not in JCaM1 cells. HIV-tat also induced cytotoxicity, activated caspases, and reactive oxygen intermediates in Jurkat cells, but not in JCaM1 cells. HIV-tat activated p56lck activity in Jurkat cells. Moreover, the reconstitution of JCaM1 cells with p56lck tyrosine kinase reversed the HIV-tat-induced NF-kappa B activation and cytotoxicity. Overall, our results demonstrate that p56lck plays a critical role in the activation of NF-kappa B, AP-1, JNK, and apoptosis by HIV-tat protein but has minimal or no role in activation of these responses by TNF.  相似文献   

14.
IL-17 expression is restricted to activated T cells, whereas the IL-17R is expressed in a variety of cell types including intestinal epithelial cells. However, the functional responses of intestinal epithelial cells to stimulation with IL-17 are unknown. Moreover, the signal transduction pathways activated by the IL-17R have not been characterized. IL-17 induced NF-kappa B protein-DNA complexes consisting of p65/p50 heterodimers in the rat intestinal epithelial cell line IEC-6. The induction of NF-kappa B correlated with the induction of CXC and CC chemokine mRNA expression in IEC-6 cells. IL-17 acted in a synergistic fashion with IL-1 beta to induce the NF-kappa B site-dependent CINC promoter. Induction of the CINC promoter by IL-17 in IEC-6 cells was TNF receptor-associated factor-6 (TRAF6), but not TRAF2, dependent. Furthermore, IL-17 induction of the CINC promoter could be inhibited by kinase-negative mutants of NF-kappa B-inducing kinase and I kappa B kinase-alpha. In addition to activation of the NF-kappa B, IL-17 regulated the activities of extracellular regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinases in IEC-6 cells. Whereas the IL-17-mediated activation of extracellular regulated kinase mitogen-activated protein kinases was mediated through ras, c-Jun N-terminal kinase activation was dependent on functional TRAF6. These data suggest that NF-kappa B-inducing kinase serves as the common mediator in the NF-kappa B signaling cascades triggered by IL-17, TNF-alpha, and IL-1 beta in intestinal epithelial cells.  相似文献   

15.
16.
17.
Proteinase inhibitor 9 (PI-9) inhibits caspase-1 (interleukin (IL)-1beta-converting enzyme) and granzyme B, thereby regulating production of the pro-inflammatory cytokine IL-1beta and susceptibility to granzyme B-induced apoptosis. We show that cellular PI-9 mRNA and protein are induced by IL-1beta, lipopolysaccharide, and 12-O-tetradecanoylphorbol-13-acetate. We identified functional imperfect nuclear factor-kappaB (NF-kappaB) sites at -135 and -88 and a consensus activator protein-1 (AP-1) site at -308 in the PI-9 promoter region. Using transient transfections in HepG2 cells to assay PI-9 promoter mutations, we find that mutational ablation of the AP-1 site or of either NF-kappaB site reduces IL-1beta-induced expression of PI-9 by approximately 60%. Mutational ablation of the two NF-kappaB sites and of the AP-1 site nearly abolishes both basal and IL-1beta-induced expression of PI-9. Nuclear extracts from IL-1beta-treated HepG2 cells exhibited strong, IL-1beta-inducible binding to the NF-kappaB sites and to the AP-1 site. Electrophoretic mobility shift assays show that after IL-1beta treatment c-Jun/c-Fos and JunD bind to the AP-1 site, whereas the p50/p65 heterodimer binds to the two NF-kappaB sites. Estrogens induce PI-9, but induction of PI-9 by estrogens and IL-1beta is not synergistic. In transiently transfected, estrogen receptor-positive HepG2ER7 cells, estrogens do not interfere with IL-1beta induction, whereas IL-1beta exhibits dose-dependent repression of estrogen-inducible PI-9 expression. Our surprising finding that the pro-inflammatory cytokine IL-1beta strongly induces PI-9 suggests a novel mechanism for regulating inflammation and apoptosis through a negative feedback loop controlling expression of the anti-inflammatory and anti-apoptotic protein, PI-9.  相似文献   

18.
Untransformed CD4(+) Th1 cells stimulated with Ag and APC demonstrated a dependence on B7- and CD28-mediated costimulatory signals for the expression and function of AP-1 proteins. The induction of transactivation by the c-fos gene regulator Elk-1 mirrored this requirement for TCR and CD28 signal integration. c-Jun N-terminal kinase (JNK) (but not extracellular signal-regulated kinase or p38) protein kinase activity was similarly inhibited by neutralizing anti-B7 mAbs. Blockade of JNK protein kinase activity with SB 202190 prevented both Elk-1 transactivation and c-Fos induction. These results identify a unique role for B7 costimulatory molecules and CD28 in the activation of JNK during Ag stimulation in Th1 cells, and suggest that JNK regulates Elk-1 transactivation at the c-fos gene to promote the formation of AP-1 complexes important to IL-2 gene expression.  相似文献   

19.
20.
Monocyte chemotactic protein-1 (MCP-1) recruits activated phagocytes to the site of tissue injury. Interferon-gamma (IFN-gamma) present in the microenvironment of glomerulus acts on mesangial cells to induce local production of MCP-1. The mechanism by which IFN-gamma stimulates expression of MCP-1 is not clear. We therefore examined the role of PI 3 kinase signaling in regulating the IFN-gamma-induced MCP-1 expression in mesangial cells. Blocking PI 3 kinase activity with Ly294002 attenuated IFN-gamma-induced MCP-1 protein and mRNA expression. IFN-gamma increased Akt kinase activity in a PI 3 kinase-dependent manner. Expression of dominant negative Akt kinase inhibited serine phosphorylation of STAT1alpha, without any effect on its tyrosine phosphorylation, and decreased IFN-gamma-induced expression of MCP-1. These data for the first time indicate a role for PI 3 kinase-dependent Akt kinase in MCP-1 expression. We have recently shown that along with Akt, PKCepsilon is a downstream target of PI 3 kinase in IFN-gamma signaling. Similar to dominant negative Akt kinase, dominant negative PKCepsilon also inhibited serine phosphorylation of STAT1alpha without any effect on tyrosine phosphorylation. Dominant negative PKCepsilon also abrogated MAPK activity, resulting in decrease in IFN-gamma-induced MCP-1 expression. Furthermore, Akt and PKCepsilon are present together in a signaling complex. IFN-gamma had no effect on this complex formation, but did increase PKCepsilon-associated Akt kinase activity. PKCepsilon did not regulate IFN-gamma-induced Akt kinase. Finally, expression of dominant negative Akt kinase blocked IFN-gamma-stimulated MAPK activation. These data provide the first evidence that PI 3 kinase-dependent Akt and PKCepsilon activation independently regulate MAPK activity and serine phosphorylation of STAT1alpha to increase expression of MCP-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号