首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhang J  Wei Y  Xiao W  Zhou Z  Yan X 《Bioresource technology》2011,102(16):7407-7414
An anaerobic baffled reactor with four compartments (C1-C4) was successfully used for treatment of acetone-butanol-ethanol fermentation wastewater and methane production. The chemical oxygen demand (COD) removal efficiency was 88.2% with a CH4 yield of 0.25 L/(g CODremoved) when organic loading rate (OLR) was 5.4 kg COD m−3 d−1. C1 played the most important role in solvents (acetone, butanol and ethanol) and COD removal. Community structure of C2 was similar to that in C1 at stage 3 with higher OLR, but was similar to those in C3 and C4 at stages 1-2 with lower OLR. This community variation in C2 was consistent with its increased role in COD and solvent removal at stage 3. During community succession from C1 to C4 at stage 3, abundance of Firmicutes (especially OTUs ABRB07 and ABRB10) and Methanoculleus decreased, while Bacteroidetes and Methanocorpusculum became dominant. Thus, ABRB07 coupled with Methanoculleus and/or acetogen (ABRB10) may be key species for solvents degradation.  相似文献   

2.
In this study, dual-cylindrical anaerobic digesters were designed and built on the pilot plant scale for the improvement of anaerobic digestion efficiency. The removal efficiency of organics, biogas productivity, yield, and microbial communities was evaluated as performance parameters of the digester. During the stable operational period in the continuous mode, the removal efficiencies of chemical oxygen demand and total solids were 74.1 and 65.1%, respectively. Biogas productivities of 63.9 m3/m3-FWW and 1.3 m3/kg-VSremoved were measured. The hydrogenotrophic methanogen orders, Methanomicrobiales and Methanobacteriales, were predominant over the aceticlastic methanogen order, Methanosarcinaceae, probably due to the tolerance of the hydrogenotrophs to environmental perturbation in the field and their faster growth rate compared with that of the aceticlastics.  相似文献   

3.
Lim SJ  Fox P 《Bioresource technology》2011,102(22):10371-10376
An anaerobic/aerobic filter (AF/BAF) system was developed treating dairy wastewater. The influent was blended with recirculated effluent to allow for pre-denitrification in the AF followed by nitrification in the BAF. The recirculation ratio ranged 100-300%. The average chemical oxygen demand (COD) removal efficiency was 79.8-86.8% in the AF and the average total nitrogen removal efficiency was 50.5-80.8% in the AF/BAF system. Steady-state mass balances on the AF were used to analyze removal kinetics in the AF. The kinetic model values for effluent COD in the AF were overestimated as compared with experimental data. The integrated suspended and attached biomass growth rates in the AF were estimated. The specific growth rate of the integrated biomass at each recirculation ratios was 0.6213, 0.6647, and 1.20831/day, respectively. The increase in specific growth rate corresponded to increases in biomass sloughing as the recirculation ratio increased.  相似文献   

4.
A study was performed to assess the feasibility of anaerobic treatment of slaughterhouse wastewaters in a UASB (Upflow Anaerobic Sludge Blanket) reactor and in an AF (Anaerobic Filter). Among the different streams generated, the slaughter line showed the highest organic content with an average COD of 8000 mg/l, of which 70% was proteins. The suspended solids content represented between 15 and 30% of the COD. Both reactors had a working volume of 21. They were operated at 37°C. The UASB reactor was run at OLR (Organic Loading Rates) of 1–6.5 kg COD/m3/day. The COD removal was 90% for OLR up to 5 kg COD/m3/day and 60% for an OLR of 6.5 kg COD/m3/day. For similar organic loading rates, the AF showed lower removal efficiencies and lower percentages of methanization. At higher OLR sludge, flotation occurred and consequently the active biomass was washed out from the filter. The results indicated that anaerobic treatment systems are applicable to slaughterhouse wastewaters and that the UASB reactor shows a better performance, giving higher COD removal efficiencies than the AF.  相似文献   

5.
This work examines the methane production potential for the anaerobic co-digestion of swine manure (SM) with winery wastewater (WW). Batch and semi-continuous experiments were carried out under mesophilic conditions. Batch experiments revealed that the highest specific methane yield was 348 mL CH4 g−1 COD added, obtained at 85.4% of WW and 0.7 g COD g−1 VS. Specific methane yield from SM alone was 27 mL CH4 g−1 COD added d−1. Furthermore, specific methane yields were 49, 87 and 107 mL CH4 g−1 COD added d−1 for the reactors co-digesting mixtures with 10% WW, 25% WW and 40% WW, respectively. Co-digestion with 40% WW improved the removal efficiencies up to 52% (TCOD), 132% (SCOD) and 61% (VSS) compared to SM alone. These results suggest that methane can be produced very efficiently by the co-digestion of swine manure with winery wastewater.  相似文献   

6.
Ecological treatment systems, which rely on renewable resources, have successfully treated municipal and industrial effluents with reduced costs compared to conventional methods, but their capacity to treat dairy wastewater is unknown. In order for ecological treatment systems to be practical for agriculture they must be able to treat a significant portion of a dairy's daily wastewater production. In this study, the impact of three strengths of dairy wastewater on effluent water quality was assessed. Three ratios of wastewater and city water—(1) one part wastewater:three parts city water, (2) one part wastewater:one part city water, and (3) two parts wastewater:one part city water—were each pumped into an ecological treatment system. Influent and effluent water samples were analyzed for PO4-P, TP, TN, NH4-N, NO3-N, total suspended solids (TSS), and carbonaceous biochemical oxygen demand (CBOD5). Influent dairy wastewater volumetric loading rates were much greater than those of municipal wastewater. Regardless of influent wastewater strength, concentrations of all measured variables were significantly reduced between the influent and effluent of the ecological treatment system. At the lowest wastewater strength, PO4-P was reduced 39%, TN 83%, and NH4-N 89%, while at the highest wastewater strength, PO4-P was reduced 41%, TN 79%, and NH4-N 70%. Increased wastewater strength required greater aerobic treatment volume to reduce concentrations of NH4-N and CBOD5.  相似文献   

7.
The applicability of anaerobic baffled reactor (ABR) was investigated for the treatment of acidic (pH 4.5–7.0) wastewater containing sulfate (1000–2000 mg/L) and Zn (65–200 mg/L) at 35 °C. The ABR consisted of four equal stages and lactate was supplemented (COD/SO42− = 0.67) as carbon and energy source for sulfate reducing bacteria (SRB). The robustness of the system was studied by decreasing pH and increasing Zn, COD, and sulfate loadings. Sulfate-reduction efficiency quickly increased during the startup period and reached 80% within 45 days. Decreasing feed pH, increasing feed sulfate and Zn concentrations did not adversely affect system performance as sulfate reduction and COD removal efficiencies were within 62–90% and 80–95%, respectively. Although feed pH was steadily decreased from 7.0 to 4.5, effluent pH was always within 6.8–7.5. Over 99% Zn removal was attained throughout the study due to formation of Zn-sulfide precipitate.  相似文献   

8.
The performance of an anaerobic hybrid reactor (AHR) for treating penicillin-G wastewater was investigated at the ambient temperatures of 30-35 °C for 245 days in three phases. The experimental data were analysed by adopting an adaptive network-based fuzzy inference system (ANFIS) model, which combines the merits of both fuzzy systems and neural network technology. The statistical quality of the ANFIS model was significant due to its high correlation coefficient R2 between experimental and simulated COD values. The R2 was found to be 0.9718, 0.9268 and 0.9796 for the I, II and III phases, respectively. Furthermore, one to one correlation among the simulated and observed values was also observed. The results showed the proposed ANFIS model was well performed in predicting the performance of AHR.  相似文献   

9.
Design and analysis of a solar reactor for anaerobic wastewater treatment   总被引:1,自引:0,他引:1  
The aim of this research was to design a solar heated reactor system to enhance the anaerobic treatment of wastewater or biological sludge at temperatures higher than the ambient air temperature. For the proposed reactor system, the solar energy absorbed by flat plate collectors was transferred to a heat storage tank, which continuously supplied an anaerobic-filter reactor with water at a maximum temperature of 35 degrees C. The packed reactor was a metallic cylindrical tank with a peripheral twin-wall enclosure. Inside this enclosure was circulated warm water from the heat storage tank. Furthermore, a mathematical model was developed for the prediction of the temperature distribution within the reactor under steady state conditions. Preliminary results based on model simulations performed with meteorological data from various geographical regions of the world suggested that the proposed solar reactor system could be a promising and environmentally friendly approach for anaerobic treatment of wastewater and biological sludge.  相似文献   

10.
The performance of laboratory-scale attached growth (AG) and suspended growth (SG) membrane bioreactors (MBRs) was evaluated in treating synthetic wastewater simulating high strength domestic wastewater. This study investigated the influence of sponge suspended carriers in AG-MBR system, occupying 15% reactor volume, on the removal of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP), and compared it to that of SG-MBR. Results showed that the removal efficiencies of COD, TN and TP in AG-MBR were 98%, 89% and 58%, respectively as compared to 98%, 74% and 38%, respectively in SG-MBR. Improved TN removal in AG-MBR systems was primarily based on simultaneous nitrification and denitrification (SND) process. These results infer that the presence of small bio-particles having higher microbial activity and the growth of complex biomass captured within the suspended sponge carriers resulted in improved TN and TP removal in AG-MBR.  相似文献   

11.
High strength milk permeate derived from ultra-filtration based cheese making process was treated in an anaerobic moving bed biofilm reactor (AMBBR) under mesophilic (35 °C) condition. Total chemical oxygen demand (TCOD) removal efficiencies of 86.3–73.2% were achieved at organic loading rates (OLR) of 2.0–20.0 g TCOD L−1 d−1. A mass balance model gave values of methane yield coefficient (YG/S) and cell maintenance coefficient (km) of 0.341 L CH4 g−1 TCODremoved and 0.1808 g TCODremoved g−1 VSS d−1, respectively. The maximum substrate utilization rate Umax was determined as 89.3 g TCOD L−1 d−1 by a modified Stover–Kincannon model. Volumetric methane production rates (VMPR) were shown to correlate with the biodegradable TCOD concentration through a Michaelis–Menten type equation. Moreover, based on VMPR and OLR removed from the reactor, the sludge production yield was determined as 0.0794 g VSS g−1 TCODremoved.  相似文献   

12.
Dairy wastewaters containing elevated fat and grease levels (868 mg l–1) were treated in an upflow anaerobic sludge blanket reactor (UASB) and resulted in effluents of high turbidity (757 nephelometric turbidity units), volatile suspended solids up to 944 mg l–1 and COD removal below 50%. When the same dairy wastewater was pre-treated with 0.1% (w/v) of fermented babassu cake containing Penicillium restrictum lipases, turbidity and volatile suspended solids were decreased by 75% and 90%, respectively, and COD removal was as high as 90%.  相似文献   

13.
To determine the feasibility of continuous enzymatic fat-splitting, immobilized lipase reactors were constructed from alternating layers of enzyme support material and separator screens. Partially purified lipase from Thermomyces lanuginosus was loaded onto the support material at pH 5.5 by irreversible adsorption. Melted edible tallow at 51°C was pumped through the immobilized enzyme layers and swept from the downstream separator screens by buffer recycled from a continuous oil/water separator. Results from continuous operation of 10-layer reactors were compared with data from single-layer reactors. The activity per square centimeter of 10-layer reactors was nearly as much as that of single-layer reactors at the same enzyme loading and oil feed rate. Data were fitted to an empirical mathematical model.  相似文献   

14.
Poultry slaughterhouses discharge very high amount of wastewaters and these wastewaters can be treated successfully at a very low cost using anaerobic treatment. In this study, the Static Granular Bed Reactor (SGBR), a newly developed anaerobic process which is fully anaerobic granule, and another Static Granular Bed Reactor containing both anaerobic granular biomass and non-granular biomass were employed for the treatment of poultry slaughterhouse wastewater. The objective of the use of two reactors having different types of anaerobic biomass is to evaluate whether anaerobic sludge could be used effectively instead of anaerobic granule, which is much more difficult to obtain than the other during the start up period. Average COD removal efficiencies were greater than 95% for both of the reactors. Furthermore, Grau second-order and modified Stover–Kincannon models were successfully used to develop a kinetic model of the experimental data with a high correlation coefficient (R2 > 0.95).  相似文献   

15.
During the treatment of raw domestic wastewater in the upflow anaerobic sludge blanket (UASB) reactor, the suspended solids (SS) present in the wastewater tend to influence negatively the methanogenic activity and the chemical oxygen demand (COD) conversion efficiency. These problems led to the emergence of various anaerobic sludge bed systems such as the expanded granular sludge bed (EGSB), the upflow anaerobic sludge blanket (UASB)-septic tank, the hydrolysis upflow sludge bed (HUSB), the two-stage reactor and the anaerobic hybrid (AH) reactor. However, these systems have, like the UASB reactor, limited performance with regard to complete treatment (e.g., removal of pathogens). In this respect, a new integrated approach for the anaerobic treatment of domestic wastewater is suggested. This approach combines a UASB reactor and a conventional completely stirred tank reactor (CSTR) for the treatment of the wastewater low in SS and sedimented primary sludge, respectively. The principal advantages of the proposed system are energy recovery from organic waste in an environmentally friendly way; lowering the negative effect of suspended solids in the UASB reactor; production of a high quality effluent for irrigation; and prevention of odour problems.  相似文献   

16.
A conceptual neural fuzzy model based on adaptive-network based fuzzy inference system, ANFIS, was proposed using available input on-line and off-line operational variables for a sugar factory anaerobic wastewater treatment plant operating under unsteady state to estimate the effluent chemical oxygen demand, COD. The predictive power of the developed model was improved as a new approach by adding the phase vector and the recent values of COD up to 5–10 days, longer than overall retention time of wastewater in the system. History of last 10 days for COD effluent with two-valued phase vector in the input variable matrix including all parameters had more predictive power. History of 7 days with two-valued phase vector in the matrix comprised of only on-line variables yielded fairly well estimations. The developed ANFIS model with phase vector and history extension has been able to adequately represent the behavior of the treatment system.  相似文献   

17.
A pilot-scale submerged membrane bioreactor was used for the treatment of domestic wastewater in order to study the influence of the variations in the concentration of volatile suspended solids (VSS) on the enzymatic activities (acid and alkaline phosphatases, glucosidase, protease, esterase, and dehydrogenase) and biodiversity of the bacterial community in the sludge. The influence of VSS concentration was evaluated in two separated experiments, which were carried out in two different seasons of the year (experiment 1 through spring–summer and experiment 2 through autumn–winter). Cluster analysis of the temperature gradient gel electrophoresis (TGGE) profiles demonstrated that the community composition was significantly different in both experiments. Within the same experiment, the bacterial community experienced sequential shifts as the biomass accumulated, as shown by the evolution of the population profiles through time as VSS concentration increased. All enzymatic activities studied were significantly lower during experiment 2, except for glucosidase. Concentrations of VSS over 8 g/l induced a strong descent of all enzymatic activities, which overlapped with a significant modification of the community composition. Sequences of the major TGGE bands were identified as representatives of the Alpha-proteobacteria, filamentous bacteria (Thiotrix), and nitrite oxidizers (Nitrospira). Some sequences which were poorly related to any validated bacterial taxon were obtained.  相似文献   

18.
This study evaluated two different support materials (ground tire and polyethylene terephthalate [PET]) for biohydrogen production in an anaerobic fluidized bed reactor (AFBR) treating synthetic wastewater containing glucose (4000 mg L−1). The AFBR, which contained either ground tire (R1) or PET (R2) as support materials, were inoculated with thermally pretreated anaerobic sludge and operated at a temperature of 30 °C. The AFBR were operated with a range of hydraulic retention times (HRT) between 1 and 8 h. The reactor R1 operating with a HRT of 2 h showed better performance than reactor R2, reaching a maximum hydrogen yield of 2.25 mol H2 mol−1 glucose with 1.3 mg of biomass (as the total volatile solids) attached to each gram of ground tire. Subsequent 16S rRNA gene sequencing and phylogenetic analysis of particle samples revealed that reactor R1 favored the presence of hydrogen-producing bacteria such as Clostridium, Bacillus, and Enterobacter.  相似文献   

19.
In this study, a promising system consisting of up-flow anaerobic sludge blanket (UASB) reactor followed by down-flow hanging sponge (DHS) reactor was investigated for onion dehydration wastewater treatment. Laboratory experiments were conducted at two different phases, i.e., phase (1) at overall hydraulic retention time (HRT) of 11 h (UASB reactor: 6 h and DHS reactor: 5 h) and phase (2) at overall HRT of 9.4 h (UASB reactor: 5.2 h and DHS reactor: 4.2 h). Long-term operation results of the proposed system showed that its overall TCOD, TBOD, TSS, TKN and NH4N removal efficiencies were 92 ± 5, 95 ± 2, 95 ± 2, 72 ± 6 and 99 ± 1.3%, respectively (phase 1). Corresponding values for the 2nd phase were 85.4 ± 5, 86 ± 3, 87 ± 6, 65 ± 8 and 95 ± 2.8%. Based on the available results, the proposed system could be more viable option for treatment of wastewater generated from onion dehydration industry in regions with tropical or sub-tropical climates and with stringent discharge standards.  相似文献   

20.
Biological pretreatment of lignocellulosic biomass by white‐rot fungus can represent a low‐cost and eco‐friendly alternative to harsh physical, chemical, or physico‐chemical pretreatment methods to facilitate enzymatic hydrolysis. In this work, solid‐state cultivation of corn stover with Phlebia brevispora NRRL‐13018 was optimized with respect to duration, moisture content and inoculum size. Changes in composition of pretreated corn stover and its susceptibility to enzymatic hydrolysis were analyzed. About 84% moisture and 42 days incubation at 28°C were found to be optimal for pretreatment with respect to enzymatic saccharification. Inoculum size had little effect compared to moisture level. Ergosterol data shows continued growth of the fungus studied up to 57 days. No furfural and hydroxymethyl furfural were produced. The total sugar yield was 442 ± 5 mg/g of pretreated corn stover. About 36 ± 0.6 g ethanol was produced from 150 g pretreated stover per L by fed‐batch simultaneous saccharification and fermentation (SSF) using mixed sugar utilizing ethanologenic recombinant Eschericia coli FBR5 strain. The ethanol yields were 32.0 ± 0.2 and 38.0 ± 0.2 g from 200 g pretreated corn stover per L by fed‐batch SSF using Saccharomyces cerevisiae D5A and xylose utilizing recombinant S. cerevisiae YRH400 strain, respectively. This research demonstrates that P. brevispora NRRL‐13018 has potential to be used for biological pretreatment of lignocellulosic biomass. This is the first report on the production of ethanol from P. brevispora pretreated corn stover. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:365–374, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号