首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Kudo  F Melchers 《The EMBO journal》1987,6(8):2267-2272
The murine gene lambda 5 is selectively expressed in pre-B lymphocytes. Of the three exons encoding lambda 5, exons II and III show strong homologies to immunoglobulin lambda light (L) chain gene segments, i.e. to J lambda intron and exon, and C lambda exon sequences respectively. We have now found, 4.6 kb upstream of lambda 5, another gene composed of two exons which is selectively expressed in pre-B cell lines as a 0.85 kb mRNA potentially coding for a protein of 142 amino acids including a 19 amino acid-long signal peptide. The 5' sequences of this gene show homologies to sequences encoding the variable regions of kappa and lambda L chains and of heavy (H) chains. The deduced amino acid sequence contains the consensus cysteine residues as well as other consensus amino acids at positions which characterize immunoglobulin (Ig) domains. We call the second gene VpreB. The 3' end of VpreB encoding the 26 carboxyl terminal amino acids shows no homology to any known nucleotide sequence. The putative protein encoded by VpreB is a potential candidate for association with the putative protein encoded by lambda 5, and thereby a candidate for association with H chains in pre-B cells. Southern blot analysis of DNA from liver (germ line) and 70Z/3 pre-B cell lines reveals two genes which hybridize to the VpreB gene. We call VpreB1 the gene which is found 5' of lambda 5. The other gene, called VpreB2, which has not yet been located within the genome, shows 97% nucleotide sequence homology to VpreB1 in an area of 1 kb which covers the coding region of the gene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
4.
Two nonallelic porcine class I MHC (SLA) genes have been isolated and characterized. Both genes are expressed in mouse L cells, directing the synthesis of class I SLA molecules that carry common monomorphic determinants but are serologically distinct. The corresponding DNA sequences have been determined. The organization of both of these genes is similar to that of other class I genes: a leader exon, three exons encoding extracellular domains, a transmembrane exon, and three intracytoplasmic exons. The two genes are highly homologous in both exon and intron segments, with average homologies of 88% and 80%, respectively. Nucleotide changes in exon 2 are clustered, whereas those in the other exons are dispersed throughout. Comparison of the swine DNA sequences with class I genes from other species reveals a generally high conservation of exons 2, 3, 4, and 6 with lower homology in the remaining protein-encoding domains. Introns are markedly less well conserved, although moderate homology is found between swine and human class I MHC genes in both introns and 3' flanking regions. Taken together with comparisons of the deduced protein sequences, these data indicate an order of swine greater than human greater than rabbit greater than mouse in the relationship of class I genes.  相似文献   

5.
We have characterized the occurrence and expression of multiple acyl carrier protein (ACP) isoforms in Arabidopsis thaliana (L.) Heynh ecotype Columbia. Immunoblot analysis of ACPs from Arabidopsis tissues separated by native polyacrylamide gel electrophoresis and 1 molar urea polyacrylamide gel electrophoresis revealed a complex pattern of multiple ACP isoforms. All tissues examined (leaves, roots, and seeds) expressed at least three forms of ACP. The immunoblot identifications of ACP bands were confirmed by acylation of ACP extracts with Escherichia coli acyl-ACP synthetase. A full-length cDNA clone has been isolated that has 70% identity with a previously characterized Arabidopsis genomic ACP clone (ACP-1) (MA Post-Beittenmiller, A Hloušek-Radojčić, JB Ohlrogge [1989] Nucleic Acids Res 17: 1777). Based on RNA blot analysis, the cDNA clone represents an ACP that is expressed in leaves, seeds, and roots. In order to identify the protein products of each known ACP gene, their mature coding sequences have been expressed in E. coli. Using polymerase chain reactions, exons II and III of the genomic ACP-1 clone and the mature coding sequences of the ACP-2 cDNA clone were subcloned into E. coli expression vectors. Site-directed mutagenesis was used to convert the amino acid sequence of the ACP-2 cDNA clone to that of the A2 clone of Lamppa and Jacks ([1991] Plant Mol Biol 16: 469-474), ACP-3. The three E. coli-expressed proteins have different mobilities on polyacrylamide gel electrophoresis gels and each comigrates with a different Arabidopsis ACP isoform expressed in leaves, seeds, and roots. Thus, all of the three cloned ACPs appear to be constitutively expressed Arabidopsis ACPs. In addition to these three ACP isoforms, protein blots indicate that seed, leaf, and root each express one or more tissue-specific isoforms.  相似文献   

6.
Molecular cloning and sequencing of a murine pgk-1 pseudogene family   总被引:1,自引:0,他引:1  
Seven genomic mouse DNA fragments carrying pgk-1-homologous regions have been cloned and sequenced. They have to be classified as processed genes because intervening sequences, present in their productive counterpart, are absent. Four pseudogenes (I-IV) represent nearly the complete sequence of pgk-1 cDNA. Two of these genes (I and II), although rather different from the published mouse pgk-1 cDNA in the 3'-untranslated region, represent the actual mouse pgk-1 cDNA sequence in the coding part except for substitutions in the third position of three codons. These genes can code for a functional PGK protein but, lacking as they do classical promoter structures, are probably not expressed. They show the typical characteristics of retroposons, being flanked by A-rich regions and direct repeats which are localized at the positions where the homology with the mouse pgk-1 cDNA is interrupted. Pseudogenes III and IV have numerous mutations. Gene III is also flanked by direct repeats, whereas gene IV is flanked by inverted repeats. The other three genes are flanked by direct repeats localized further inside the target sites. They are truncated and mutated extensively as usually observed with pseudogenes.  相似文献   

7.
8.
9.
Regenerating gene (Reg), first isolated from a regenerating islet cDNA library, encodes a secretory protein with a growth stimulating effect on pancreatic beta cells that ameliorates the diabetes of 90% depancreatized rats and non-obese diabetic mice. Reg and Reg-related genes have been revealed to constitute a multigene family, the Reg family, which consists of four subtypes (types I, II, III, IV) based on the primary structures of the encoded proteins of the genes [Diabetes 51(Suppl. 3) (2002) S462]. Plural type III Reg genes were found in mouse and rat. On the other hand, only one type III REG gene, HIP/PAP (gene expressed in hepatocellular carcinoma-intestine-pancreas/gene encoding pancreatitis-associated protein), was found in human. In the present study, we found a novel human type III REG gene, REG III. This gene is divided into six exons spanning about 3 kilobase pairs (kb), and encodes a 175 amino acid (aa) protein with 85% homology with HIP/PAP. REG III was expressed predominantly in pancreas and testis, but not in small intestine, whereas HIP/PAP was expressed strongly in pancreas and small intestine. IL-6 responsive elements existed in the 5'-upstream region of the human REG III gene indicating that the human REG III gene might be induced during acute pancreatitis. All the human REG family genes identified so far (REG Ialpha, REG Ibeta, HIP/PAP, REG III and REG IV) have a common gene structure with 6 exons and 5 introns, and encode homologous 158-175-aa secretory proteins. By database searching and PCR analysis using a yeast artificial chromosome clone, the human REG family genes on chromosome 2, except for REG IV on chromosome 1, were mapped to a contiguous 140 kb region of the human chromosome 2p12. The gene order from centromere to telomere was 5' HIP/PAP 3'-5' RS 3'-3' REG Ialpha 5'-5' REG Ibeta 3'-3' REG III 5'. These results suggest that the human REG gene family is constituted from an ancestor gene by gene duplication and forms a gene cluster on the region.  相似文献   

10.
11.
Concerted and divergent evolution within the rat gamma-crystallin gene family   总被引:11,自引:0,他引:11  
The nucleotide sequences of six rat gamma-crystallin genes have been determined. All genes have the same mosaic structure: the first exons contain a relatively short (25 to 44 base-pair) 5' non-coding region and the first nine base-pairs of the coding sequence, the second exons encode protein motifs I and II, while protein motifs III and IV are encoded by the third exons. The third exons also contain a 60 to 67-base-pair long 3' non-coding region. In the gamma 1-2 gene, the splice acceptor site of the third exon has been shifted three base-pairs upstream. Hence, the protein product of this gene is one amino acid residue longer. The first introns, though varying in length from 85 to 100 base-pairs, are conserved in sequence. The second introns vary considerably in length (0.9 X 10(3) to 1.9 X 10(3) base-pairs) and sequence. The second exons of the genes show concerted evolution and have undergone multiple gene conversions. In contrast, the third exons show divergent evolution. From the sequences of the third exons, an evolutionary tree of the gene family was constructed. This tree suggests that three of the present genes derive directly from the genes that originated from a tandem duplication of a two-gene cluster. Two duplications of the last gene of the four-gene cluster then yielded the other three genes. Region a' of the third exon, encoding protein motif III, is variable, while the region encoding protein motif IV (b') is constant. We postulate that this variability in region a' is due to a period of radiation after each gene duplication. A comparison of the rat sequences with those of orthologous sequences from other species shows that the variation in region a' is now preserved. Hence, it might specify the specific functional property of each gamma-crystallin protein within the lens.  相似文献   

12.
13.
14.
15.
Evolution of the fibronectin gene. Exon structure of cell attachment domain   总被引:6,自引:0,他引:6  
Genomic DNA coding for human fibronectin was identified from a human genomic library by screening with a cDNA clone that specifies the cell attachment domain in human fibronectin. Two clones which together provided more than 22 kilobase pairs of the fibronectin gene were isolated. The exons in this region correspond to approximately 40% of the coding region in the fibronectin gene. They code for the middle region of the polypeptide which consists of homologous repeating segments of about 90 amino acids called type III homologies. Nucleotide sequence of the portion of the gene corresponding to the cell attachment domain showed that the Arg-Gly-Asp-Ser cell attachment site is encoded within a 165-base pair exon. This exon, together with a 117-base pair exon codes for a homology unit. Analysis of the exon/intron organization in some of the neighboring homology units indicated a similar 2-exon structure. An exception to this pattern is that a single large exon codes for a type III homology unit that, due to alternative mRNA splicing, exists in some but not all fibronectin polypeptides. The introns separating the coding sequences for the type III homology units are located in conserved positions whereas the introns that interrupt the coding sequence within the units are in a variable position generating variations in the size of the homologous exons. This exon/intron organization suggests that the type III homology region of the fibronectin gene has evolved by a series of gene duplications of a primordial gene consisting of two exons. Specification of one of these homology units to the cell attachment domain has occurred within this exon/intron arrangement.  相似文献   

16.
The "ovalbumin Y" gene, one of three which constitute the ovalbumin gene family in chicken has been completely sequenced. The exact location of exons can be derived from the comparison with the ovalbumin gene sequence and from the map previously established by electron microscopy analysis. During evolution of the Y gene, selective pressure has operated to retain a sequence coding for an ovalbumin-like protein. The location of splice junctions, the length of protein coding exons and the reading phase are as in the ovalbumin gene. The overall homology between the Y and ovalbumin protein coding sequences is 72.6% (resulting in a 58% homology for the amino acid sequences). A significantly high number of base changes within coding sequences are present in clusters, which appear in several cases to be correlated with the occurrence of direct repeats. The 3' untranslated sequences of the Y and ovalbumin mRNAs have diverged much more, and the Y sequence contains a peculiar U(T) rich region. Corresponding introns of the ovalbumin and Y genes differ extensively both in sequence and in length. They share however characteristic biases in their base distribution.  相似文献   

17.
18.
《Genomics》1995,29(3)
Genes that encode the vertebrate fibrillar collagen types I–III have previously been shown to share a highly conserved intron/exon organization, thought to reflect common ancestry and evolutionary pressures at the protein level. We report here the complete intron/exon organization ofCOL5A1,the human gene that encodes the α1 chain of fibrillar collagen type V. The structure ofCOL5A1is shown to be considerably diverged from the conserved structure of the genes for fibrillar collagen types I–III.COL5A1has 66 exons, which is greater than the number of exons found in the genes for collagen types I–III. The increased number of exons is partly due to the increased size of the pro-α1(V) N-propeptide, relative to the sizes of the N-propeptides of the types I–III procollagen molecules. In addition, however, the increased number of exons is due to differences in the intron/exon organization of the triple-helix coding region ofCOL5A1compared to the organization of the triple-helix coding regions of the genes for collagen types I–III. Of particular interest is the increase of 54 bp exons in this region ofCOL5A1,strongly supporting the proposal that the triple-helix coding regions of fibrillar collagen genes evolved from duplication of a 54 bp primordial genetic element. Moreover, comparison of the structure ofCOL5A1to the highly conserved structure of the genes of collagen types I–III provides insights into the probable structure of the ancestral gene that gave rise to what appears to be two classes of vertebrate fibrillar collagen genes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号