首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ubiquitin system plays important roles in the regulation of numerous cellular processes by conjugating ubiquitin to target proteins. In most cases, conjugation of polyubiquitin to target proteins regulates their function. In the polyubiquitin chains reported to date, ubiquitin monomers are linked via isopeptide bonds between an internal Lys and a C-terminal Gly. Here, we report that a protein complex consisting of two RING finger proteins, HOIL-1L and HOIP, exhibits ubiquitin polymerization activity by recognizing ubiquitin moieties of proteins. The polyubiquitin chain generated by the complex is not formed by Lys linkages, but by linkages between the C- and N-termini of ubiquitin, indicating that the ligase complex possesses a unique feature to assemble a novel head-to-tail linear polyubiquitin chain. Moreover, the complex regulates the stability of Ub-GFP (a GFP fusion protein with an N-terminal ubiquitin). The linear polyubiquitin chain generated post-translationally may function as a new modulator of proteins.  相似文献   

2.
Ubiquitination (ubiquitylation) is a common protein modification that regulates a multitude of processes within the cell. This modification is typically accomplished through the covalent binding of ubiquitin to a lysine residue onto a target protein and is catalysed by the presence of three enzymes: an activating enzyme (E1), ubiquitin‐conjugating enzyme (E2) and ubiquitin‐protein ligase (E3). In recent years, ubiquitination has risen as a major signalling regulator of immunity and microbial pathogenesis in the mammalian system. Still, little is known about how ubiquitin relates specifically to vector immunology. Here, we provide a brief overview of ubiquitin biochemistry and describe how ubiquitination regulates immune responses in arthropods of medical relevance. We also discuss scientific gaps in the literature and suggest that, similar to mammals, ubiquitin is a major regulator of immunity in medically important arthropods.  相似文献   

3.
Degradation of intracellular proteins via the ubiquitin pathway involves several steps. In the initial event, ubiquitin becomes covalently linked to the protein substrate in an ATP-requiring reaction. Following ubiquitin conjugation, the protein moiety of the adduct is selectively degraded with the release of free and reusable ubiquitin. Ubiquitin modification of a variety of protein targets in the cell plays a role in basic cellular functions. Modification of core nucleosomal histones is probably involved in regulation of gene expression at the level of chromatin structure. Ubiquitin attachment to cell surface proteins may play roles in processes of cell-cell interaction and adhesion, and conjugation of ubiquitin to other yet to be identified protein(s) could be involved in the progression of cells through the cell cycle. Despite the considerable progress that has been made in the elucidation of the mode of action and cellular roles of the ubiquitin pathway, many major problems remain unsolved. A problem f central importance is the specificity in the ubiquitin ligation system. Why are certain proteins conjugated and committed for degradation, whereas other proteins are not? A free α-NH2 group is an important feature of the protein structure recognized by the ubiquitin conjugation system, and tRNA is required for the conjugation of ubiquitin to selective proteo-lytic substrates and for their subsequent degradation. These findings can shed light on some of the features of a substrate that render it susceptile to ubiquitin-mediated degradation.  相似文献   

4.
Mechanism and function of deubiquitinating enzymes   总被引:2,自引:0,他引:2  
Attachment of ubiquitin to proteins is a crucial step in many cellular regulatory mechanisms and contributes to numerous biological processes, including embryonic development, the cell cycle, growth control, and prevention of neurodegeneration. In these diverse regulatory settings, the most widespread mechanism of ubiquitin action is probably in the context of protein degradation. Polyubiquitin attachment targets many intracellular proteins for degradation by the proteasome, and (mono)ubiquitination is often required for down-regulating plasma membrane proteins by targeting them to the vacuole (lysosome). Ubiquitin-protein conjugates are highly dynamic structures. While an array of enzymes directs the conjugation of ubiquitin to substrates, there are also dozens of deubiquitinating enzymes (DUBs) that can reverse the process. Several lines of evidence indicate that DUBs are important regulators of the ubiquitin system. These enzymes are responsible for processing inactive ubiquitin precursors, proofreading ubiquitin-protein conjugates, removing ubiquitin from cellular adducts, and keeping the 26S proteasome free of inhibitory ubiquitin chains. The present review focuses on recent discoveries that have led to a better understanding the mechanisms and physiological roles of this diverse and still poorly understood group of enzymes. We also discuss briefly some of the proteases that act on ubiquitin-like protein (UBL) conjugates and compare them to DUBs.  相似文献   

5.
Varshavsky A  Turner G  Du F  Xie Y 《Biological chemistry》2000,381(9-10):779-789
Eukaryotes contain a highly conserved multienzyme system which covalently links a small protein, ubiquitin, to a variety of intracellular proteins that bear degradation signals recognized by this system. The resulting ubiquitin-protein conjugates are degraded by the 26S proteasome, an ATP-dependent protease. Pathways that involve ubiquitin play major roles in a huge variety of processes, including cell differentiation, cell cycle, and responses to stress. In this article we briefly review the design of the ubiquitin system, and describe two recent advances, the finding that ubiquitin ligases interact with specific components of the 26S proteasome, and the demonstration that peptides accelerate their uptake into cells by activating the N-end rule pathway, one of several proteolytic pathways of the ubiquitin system.  相似文献   

6.
7.
8.
The ubiquitin protein conjugation system tags proteins with the small polypeptide ubiquitin. Most poly-ubiquitinated proteins are recognized and degraded by the proteasome, a large multi-subunit protease. Ubiquitin-dependent protein degradation is used as a regulatory tool for many essential processes, the best studied of which is eukaryotic cell cycle progression. More recently, genetic studies in C. elegans have identified multiple roles for the ubiquitin system in early development, where ubiquitin-dependent protein degradation governs such diverse events as passage through meiosis, cytoskeletal regulation and cell fate determination.  相似文献   

9.
The ubiquitin-proteasome pathway for protein degradation has emerged as one of the most important mechanisms for regulation of a wide spectrum of cellular functions in virtually all eukaryotic organisms. Specifically, in plants, the ubiquitin/26S proteasome system (UPS) regulates protein degradation and contributes significantly to development of a wide range of processes, including immune response, development and programmed cell death. Moreover, increasing evidence suggests that numerous plant pathogens, such as Agrobacterium, exploit the host UPS for efficient infection, emphasizing the importance of UPS in plant-pathogen interactions.The substrate specificity of UPS is achieved by the E3 ubiquitin ligase that acts in concert with the E1 and E2 ligases to recognize and mark specific protein molecules destined for degradation by attaching to them chains of ubiquitin molecules. One class of the E3 ligases is the SCF (Skp1/Cullin/F-box protein) complex, which specifically recognizes the UPS substrates and targets them for ubiquitination via its F-box protein component. To investigate a potential role of UPS in a biological process of interest, it is important to devise a simple and reliable assay for UPS-mediated protein degradation. Here, we describe one such assay using a plant cell-free system. This assay can be adapted for studies of the roles of regulated protein degradation in diverse cellular processes, with a special focus on the F-box protein-substrate interactions.  相似文献   

10.
11.
Post-translational modification is central to protein stability and to the naodulation of protein activity.Various types ofprotein modification,such as phosphorylation,methylation,acetylation,myristoylation,glycosylation,and ubiquitina-tion,have been reported.Among them,ubiquitination distinguishes itself from others in that most of the ubiquitinatedproteins are targeted to the 26S proteasome for degradation.The ubiquitin/26S proteasome system constitutes the majorprotein degradation pathway in the cell.In recent years,the importance of the ubiquitination machinery in the controlof numerous eukaryotic cellular functions has been increasingly appreciated.Increasing number of E3 ubiquitin ligasesand their substrates,including a variety of essential cellular regulators have been identified.Studies in the past severalyears have revealed that the ubiquitination system is important for a broad range of plant developmental processes andresponses to abiotic and biotic stresses.This review discusses recent advances in the functional analysis of ubiquitina-tion-associated proteins from plants and pathogens that play important roles in plant-microbe interactions.  相似文献   

12.
13.
Degradation of proteins by the ubiquitin-mediated proteolytic pathway   总被引:3,自引:0,他引:3  
Degradation of a protein by the ubiquitin system involves two distinct processes. In the first step, ubiquitin is covalently linked in an ATP-dependent mode to the protein substrate. The protein moiety of the conjugate is then degraded by a specific protease into free amino acids, resulting in the release of free and reutilizable ubiquitin. This process also requires energy. In this review we will briefly summarize our current knowledge of the role of the ubiquitin system in protein turnover and discuss in detail the mechanism involved in selection of substrates for conjugation and in degradation of ubiquitin-conjugated proteins.  相似文献   

14.
The novel functions of ubiquitination in signaling   总被引:29,自引:0,他引:29  
Ubiquitin is best known for its function in targeting proteins for degradation by the proteasome. Recent studies have revealed several new functions of ubiquitin that are independent of proteasomal degradation. These functions include the novel signaling roles of ubiquitin in DNA repair and the activation of protein kinases such as IkappaB kinase. In both cases, a novel form of polyubiquitin chain linked through lysine-63 of ubiquitin plays an important regulatory role. Monoubiquitination also has signaling roles that are distinct from those of polyubiquitination, as illustrated from the studies of DNA repair. Thus, polyubiquitination and monoubiquitination have emerged as important signaling mechanisms that control diverse physiological and pathological processes.  相似文献   

15.
The protein ubiquitin is an important post-translational modifier that regulates a wide variety of biological processes. In cells, ubiquitin is apportioned among distinct pools, which include a variety of free and conjugated species. Although maintenance of a dynamic and complex equilibrium among ubiquitin pools is crucial for cell survival, the tools necessary to quantify each cellular ubiquitin pool have been limited. We have developed a quantitative mass spectrometry approach to measure cellular concentrations of ubiquitin species using isotope-labeled protein standards and applied it to characterize ubiquitin pools in cells and tissues. Our method is convenient, adaptable and should be a valuable tool to facilitate our understanding of this important signaling molecule.  相似文献   

16.
F-box proteins everywhere   总被引:2,自引:0,他引:2  
The ubiquitin proteasome system is a key regulator of many biological processes in all eukaryotes. This mechanism employs several types of enzymes, the most important of which are the ubiquitin E3 ligases that catalyse the attachment of polyubiquitin chains to target proteins for their subsequent degradation by the 26S proteasome. Among the E3 families, the SCF is the best understood; it consists of a multi-protein complex in which the F-box protein plays a crucial role by recruiting the target substrate. Strikingly, nearly 700 F-box proteins have been predicted in Arabidopsis, suggesting that plants have the capacity to assemble a multitude of SCF complexes, possibly controlling the stability of hundreds of substrates involved in a plethora of biological processes. Interestingly, viruses and even pathogenic bacteria have also found ways to hijack the plant SCF and to reprogram it for their own purposes.  相似文献   

17.
18.
Protein ubiquitylation has emerged as an important regulatory mechanism that impacts almost every aspect of the DNA damage response. In this review, we discuss how DNA repair and checkpoint pathways utilize the diversity offered by the ubiquitin conjugation system to modulate the response to genotoxic lesions in space and time. In particular, we will highlight recent work done on the regulation of DNA double-strand breaks signalling and repair by the RNF8/RNF168 E3 ubiquitin ligases, the Fanconi anemia pathway and the role of protein degradation in the enforcement and termination of checkpoint signalling. We also discuss the various functions of deubiquitylating enzymes in these processes along with potential avenues for exploiting the ubiquitin conjugation/deconjugation system for therapeutic purposes.  相似文献   

19.
Deubiquitination is now understood to be as important as its partner ubiquitination for the maintenance of protein half-life, activity, and localization under both normal and pathological conditions. The enzymes that remove ubiquitin from target proteins are called deubiquitinases (DUBs) and they regulate a plethora of cellular processes. DUBs are essential enzymes that maintain intracellular protein homeostasis by recycling ubiquitin. Ubiquitination is a post-translational modification where ubiquitin molecules are added to proteins thus influencing activation, localization, and complex formation. Ubiquitin also acts as a tag for protein degradation, especially by proteasomal or lysosomal degradation systems. With ~100 members, DUBs are a large enzyme family; the ubiquitin-specific peptidases (USPs) being the largest group. USP10, an important member of this family, has enormous significance in diverse cellular processes and many human diseases. In this review, we discuss recent studies that define the roles of USP10 in maintaining cellular function, its involvement in human pathologies, and the molecular mechanisms underlying its association with cancer and neurodegenerative diseases. We also discuss efforts to modulate USPs as therapy in these diseases.Subject terms: Cell biology, Cell signalling  相似文献   

20.
In living cells, polypeptide chains emerging from ribosomes and preexisting polypeptide chains face constant threat of misfolding and aggregation. To prevent protein aggregation and to fulfill their biological activity, generally, protein must fold into its proper three-dimensional structure throughout their lifetimes. Eukaryotic cell possesses a quality control (QC) system to contend the problem of protein misfolding and aggregation. Cells achieve this functional QC system with the help of molecular chaperones and ubiquitin-proteasome system (UPS). The well-conserved UPS regulates the stability of various proteins and maintains all essential cellular function through intracellular protein degradation. E3 ubiquitin ligase enzyme determines specificity for degradation of certain substrates via UPS. New emerging evidences have provided considerable information that various E3 ubiquitin ligases play a major role in cellular QC mechanism and principally designated as QC E3 ubiquitin ligases. Nevertheless, very little is known about how E3 ubiquitin ligase maintains QC mechanism against abnormal proteins under various stress conditions. Here in this review, we highlight and discuss the functions of various E3 ubiquitin ligases implicated in protein QC mechanism. Improving our knowledge about such processes may provide opportunities to modulate protein QC mechanism in age-of-onset diseases that are caused by protein aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号