首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We recently reported that APOE promoter activity is stimulated by cAMP, this effect being mediated by factor AP-2 [Garcia et al. (1996) J. Neurosci. 16, 7550-7556]. Here, we study whether cAMP-induced phosphorylation modulates the activity of AP-2. Recombinant AP-2 was phosphorylated in vitro by protein kinase A (PKA) at Ser239. Mutation of Ser239 to Ala abolished in vitro phosphorylation of AP-2 by PKA, but not the DNA binding activity of AP-2. Cotransfection studies showed that PKA stimulated the effect of AP-2 on the APOE promoter, but not that of the S239A mutant. Therefore, cAMP may modulate AP-2 activity by PKA-induced phosphorylation of this factor.  相似文献   

3.
4.
5.
R Buchta  R Gennaro  M Pontet  M Fridkin  D Romeo 《FEBS letters》1988,237(1-2):173-177
Treatment of human neutrophils with C-reactive protein (CRP) causes a concentration-dependent in the extent of activation of superoxide production and of granule secretion, induced by phorbol-12-myristate-13-acetate (PMA) or N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLF). The same treatment also causes a significant reduction in the degree of PMA- and fMLF-stimulated phosphorylation of several cell proteins. These include the proteins of 43-47 kDa, whose extent of phosphorylation correlates with the activation of superoxide production and of secretion. Contrary to the effects exerted on protein phosphorylation, CRP does not affect the fMLF-elicited increase in neutrophil cytosolic Ca2+.  相似文献   

6.
7.
An hepatic protein kinase that phosphorylates microtubule-associated protein 2 (MAP-2) on Ser/Thr residues is markedly activated after intraperitoneal injection of cycloheximide in the rat. The enzyme has been purified greater than 10,000-fold to near homogeneity and corresponds to a 54-kDa polypeptide, based on auto-phosphorylation, renaturation of activity from sodium dodecyl sulfate gels, and gel filtration. The protein kinase activity is unaffected by prior autophosphorylation, Ca2+, diacylglycerol and phospholipids, cyclic nucleotides, staurosporine, and protein kinase inhibitor, but can be totally and specifically deactivated by the Ser/Thr protein phosphatase 2A. The enzyme is inhibited completely but reversible by transition metals and p-chloromercuribenzoate, and is strongly stimulated by poly-L-lysine toward most, but not all protein substrates. The activity of the cycloheximide-stimulated MAP-2 kinase (pp54 MAP-2 kinase) toward potential polypeptide substrates was compared to that of an insulin-stimulated MAP-2 kinase (pp42 MAP-2 kinase). Although both MAP-2 kinases exhibited little or no ability to phosphorylate histones and casein, the two kinases had a distinguishable substrate specificity. At comparable MAP-2 phosphorylating activities, pp42 MAP-2 kinase, but not pp54 MAP-2 kinase, phosphorylated and activated the Xenopus S6 protein kinase II. Moreover, pp42 MAP-2 kinase phosphorylated myelin basic protein at 10-12-fold higher rates than did pp54 MAP-2 kinase. Cycloheximide-activated pp54 MAP-2 protein kinase appears to be a previously uncharacterized protein kinase that is itself regulated through Ser/Thr phosphorylation and, perhaps, polypeptide regulators with basic domains. The identity of the upstream regulatory elements and the native substrates remain to be established.  相似文献   

8.
Treatment of granulosa cells with luteinizing hormone (LH) or follicle-stimulating hormone (FSH) stimulated the phosphorylation of a 58,000 molecular weight protein found in the 900 x g pellet. The phosphorylation of this protein was rapid, being significant at 1 min. LH treatment for 30 min induced greater phosphorylation of this protein than did FSH. LH and FSH also appeared to stimulate the phosphorylation of different 900 x g pellet proteins. Since both are known to utilize cAMP as a second messenger, the finding of these unique gonadotropin-induced phosphorylations may point to an additional regulatory mechanism.  相似文献   

9.
We previously presented that the neutral sphingomyelinase 2 (nSMase2) is the only SMase activated in human airway epithelial (HAE) cells following exposure to oxidative stress (ox-stress), yielding ceramide accumulation and thereby inducing apoptosis. Furthermore, we reported that nSMase2 is a phospho-protein in which the level of phosphorylation controls nSMase2 activation induced by ox-stress. Here we identify five specific serines that are phosphorylated in nSMase2 and demonstrate that their phosphorylation controls the nSMase2 activity upon ox-stress exposure in an interdependent manner. Furthermore, we show that the nSMase2 protein stability and thus its level of expression is also post-translationally regulated by these five serine phosphorylation sites. This study provides initial structure/function insights regarding nSMase2 phosphorylation sites and offers some new links for future studies aiming to fully elucidate nSMase2 regulatory machinery.  相似文献   

10.
Comparison of cyclic AMP- and calcium-dependent phosphorylation in rat brain cytosol reveals MAP-2 to be a common endogenous substrate. Examination of limited protease digestion patterns indicates that the two kinases phosphorylate MAP-2 at distinct sites and suggests that such phosphorylation may have differential effects on MAP-2 function.  相似文献   

11.
A pure bovine phospholamban sample was phosphorylated by cyclic AMP-dependent protein kinase maximally to about 1 mol of phosphate/mol of protein (Mr 25,000), whereas phospholamban purified from bovine cardiac SR (sarcoplasmic reticulum) vesicle prephosphorylated by the protein kinase was found to contain 4.6 mol of phosphate/mol of phospholamban. The decrease in phospholamban phosphorylation occurred during the protein purification at the immunoaffinity chromatography step. The protein phosphorylation could be restored by the addition of the affinity column flow-through fraction to the phosphorylation reaction. The phosphorylation-stimulating activity of the flow-through fraction was resistant to boiling and trypsin treatment and extractable by organic solvent, suggesting that the endogenous factor(s) is lipid. Various phospholipids were found capable of stimulating the phosphorylation of phospholamban by cyclic AMP-dependent protein kinase, but only phosphatidylinositol could stimulate the protein phosphorylation to a level achieved by the phosphorylation of SR membrane-bound phospholamban, about 5 mol of phosphate/mol. Phospholamban phosphorylated in the presence of phosphatidylinositol showed similar sites of phosphorylation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobility shifts as the phospholamban isolated from phosphorylated SR vesicles. Results of the present study suggest that phospholamban in SR is embedded in a phosphatidylinositol-rich microenvironment, and that this specific environment may be important for the regulation of Ca2+ pump by phospholamban.  相似文献   

12.
13.
14.
15.
The ether phospholipid platelet-activating factor and certain similar phospholipids, including lysophosphatidylcholine, are known to stimulate both H+ transport and protein phosphorylation in plant microsomal membranes. In the present work, several polypeptides in highly purified tonoplast membranes from zucchini (Cucurbita pepo L.) showed platelet-activating factor-dependent phosphorylation. Comparison of protein phosphorylation in different membrane fractions separated by sucrose step density gradient centrifugation indicated that some of the phosphoproteins were contaminants or were common to several membrane fractions, but platelet-activating factor-dependent phosphorylation of peptides at 30, 53, and perhaps 100 kilodaltons was tonoplast specific. The phosphoprotein of 53 kilodaltons was shown by three different approaches (one- and two-dimensional polyacrylamide gel electrophoresis, western blots, and immunoprecipitation) to cross-react with antibody raised against the B subunit of the tonoplast ATPase from red beet (Beta vulgaris L.).  相似文献   

16.
AAK1, the adaptor-associated kinase 1, phosphorylates the μ2 subunit of AP2 and regulates the recruitment of AP2 to tyrosine-based internalization motifs found on membrane-bound receptors. AAK1 overexpression specifically inhibits the AP2-dependent internalization of transferrin receptor and LDL-receptor related protein by functionally sequestering AP2 (Conner and Schmid. J Cell Biol 2003; 162: 773). However, while AAK1 stably associates with AP2 and specifically targets the μ2 subunit in vitro , μ2 phosphorylation in vivo was not altered by overexpression of either wild-type or kinase-inactive AAK1. These results suggested that AAK1 might be tightly regulated in the cell. Here, we report that AAK1 is an atypical kinase that is rate limited by its stable association with AP2 and that clathrin stimulates μ2 phosphorylation by AAK1. Efficient stimulation of AAK1 by clathrin involves multiple interactions between several domains on AAK1 and both heavy and light chains on clathrin. Importantly, incubation of AAK1 with clathrin cages resulted in even greater stimulation when compared to that of unassembled clathrin triskelia. Collectively, our observations indicate that clathrin function is not limited to structural and/or mechanical roles in endocytic vesicle formation: the stimulatory effects of clathrin on AAK1 activity argue that it also plays a regulatory role by modulating the activity of AP2 complexes through activation of AAK1. We suggest a model in which AAK1 is specifically activated in coated pits to enhance cargo recruitment and efficient internalization.  相似文献   

17.
Under certain physiological conditions a change i n the phosphorylation of histones in mouse epidermis in vivo was observed. Thus a single local application of the tumor-promoting mitogen 12-O-tetradecanoylphorbol-13-acetate caused a long-lasting increase of histone H1 phosphorylation which paralleled stimulated cell proliferation. Injection of the antimitotic β-adrenergic agonist isoproterenol led to a temporatory decrease in the rate of phosphorylation of H1, H2A and H2b immediately after cyclic AMP accumulation. A complete protein phosphorylation system could be demonstrated in mouse epidermis homogenates. The following enzyme activities were partially purified and characterized: a cyclic AMP-dependnet histone kinase; a ‘casein kinase’ and an ‘unsopecific’ protein kinase; a histone-specific protein phosphatase; and two ‘unspecific’ phosphoprotein phosphatases. In addition, a stimulatory effect of cyclic GPM on histone phosphorylation was observed. The enzymes were found to be predominantly localized in the 105 000 × g supernatant, but a small proportion of protein kinase and phosphatase activity could be regularly demonstrated in cell nuclei.  相似文献   

18.
19.
20.
Bovine albumin was phosphorylated by both cAMP-dependent protein kinase and casein kinase I to a significant extent. Other albumins were also tested and it was found that the extent of phosphorylation varied with the species of origin of the albumin, but was between 1 and 3 mol phosphate per mole albumin for the cAMP-dependent protein kinase-catalyzed reactions. The phosphorylation occurred at and above pH 7.5 and required the presence of thiol reagents. Phosphoamino acid analyses of bovine albumin showed that it was phosphorylated on at least two serine residues. The phosphorylation could not be demonstrated in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号