首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sugar chains of microsomal and lysosomal β-glucuronidases of rat liver were studied by endo-β-N-acetylglucosaminidase H digestion and by hydrazinolysis. Only a part of the oligosaccharides released from microsomal β-glucuronidase was an acidic component. The acidic component was not hydrolyzed by sialidase and by calf intestinal and Escherichia coli alkaline phosphatases, but was converted to a neutral component by phosphatase digestion after mild acid treatment indicating the presence of a phosphodiester group. The neutral oligosaccharide portion of microsomal enzyme was a mixture of five high mannose-type sugar chains: (Manα1 → 2)0~4 [Manα1 → 6(Manα1 → 3)Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc]. In contrast, lysosomal enzyme contains only Manα1 → 6 (Manα1 → 3) Manα1 → 6(Manα1 → 3) Manβ1 → 4GlcNAcβ1 → 4GlcNAc. The result indicates that removal of α1 → 2-linked mannosyl residues from (Manα1 → 2)4[Manα1 → 6(Manα1 → 3)Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc → Asn] starts already in the endoplasmic reticulum of rat liver.  相似文献   

2.
Human antithrombin III contains four asparagine-linked sugar chains in one molecule. The sugar chains were quantitatively released as radioactive oligosaccharides from the polypeptide portion by hydrazinolysis followed by N-acetylation and NaB3H4 reduction. All of the oligosaccharides, thus obtained, contain N-acetylneuraminic acid. A same neutral nonaitol was released from all acidic oligosaccharides by sialidase treatment. By combination of the sequential exoglycosidase digestion and methylation analysis, their structures were elucidated as NeuAcα2 → 6Galβ1 → 4GlcNAcβ1 → 2Manα1 → 6-(NeuAcα2 → 6Galβ1 → 4GlcNAcβ1 → 2Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc, Galβ1 → 4GlcNAcβ1 → 2Manα1 → 6(NeuAcα2 → 6Galβ1 → 4GlcNAcβ1 → 2Manαl → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc, and NeuAcα2 → 6Galβ1 → 4GlcNAcβ1 → 2Manα1 → 6(Galβ1 → 4GlcNAcβ1 → 2Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc.  相似文献   

3.
A minor glycopeptide was newly isolated from the exhaustive pronase digest of crystalline ovalbumin by Dowex-50w column chromatography, and its structure was determined as Manα1→3Manα1→6 (Manα1→3) Manβ1→4GlcNAcβ1→4GlcNAc→Asn. This glycopeptide (GP-VI) has the smallest carbohydrate unit among the ovalbumin glycopeptides so far reported, and is also the smallest glycopeptide of all which are susceptible to endo-β-N-acetylglucosaminidases CII and H. This finding, together with the already reported data of the action of both enzymes to glycopeptides of known structures, elucidates that the structural requirement of CII enzyme for its substrate is R→2Manα1→3 (R→6) Manα1→6 (R→2Manα1→3) (R→4) Manβ1→4GlcNAcβ1→4GlcNAc→Asn, in which R represents either hydrogen or sugars, and that of H enzyme is R→2Manα1→3 (R→6) Manα1→6 (R→4) Manβ1→4GlcNAcβ1→4GlcNAc→Asn.  相似文献   

4.
Cathepsin D from porcine spleen contained mannose (3.3%), glucosamine (1.4%), and mannose 6-phosphate (0.08%). Essentially all of the oligosaccharides of cathepsin D could be released by endo-β-N-acetylglucosaminidase H, pointing to oligomajmoside types of structures. Three neutral oligosaccharide fractions, containing 5, 6, and 7 mannose residues, respectively, were isolated by gel permeation chromatography on Bio-Gel P-2. Studies using exoglycosidase digestions and 500-MHz 1H NMR spectroscopy revealed that their structures are [Manα1 → 2]0 or 1Manα1 → 6[Manα1 → 3]Manα1 → 6[(Manα1 → 2)0 or 1Manα1 → 3]Manβ1 → 4GlcNAcβ1 → 4 GlcNAc. These structures are identical to what have recently been proposed by Takahashi et al. for the major oligosaccharide units of cathepsin D from the same source (T. Takahashi P.G. Schimidt, and J. Tang (1983)J. Biol. Chem.258, 2819–2930), except for the occurrence of two isomeric oligosaccharides containing six mannoses. Only a part (3.4%) of the oligosaccharides were acidic, containing phosphates in monoester linkage. The phosphorylated oligosaccharides also consisted of oligomannoside-type chains which were analogous to, but more heterogeneous in size than the neutral oligosaccharides. Cathepsin D was bound to a mannose- and N-acetylglucosamine-specific lectin (mannan-binding protein) isolated from rabbit liver with the Ki value of 5.4 × 10?6m.  相似文献   

5.
Subcellular distribution of plant endo-β-N-acetylglucosaminidase (endo-β-GlcNAc-ase) and high-mannose type free N-glycans produced by the endoglycosidase has been analyzed using cotyledons of pumpkin seedlings as the model plant cells. Each organelle in the cotyledons was fractionated by ultracentrifugation with the sucrose density gradient system and the endo-β-GlcNAc-ase activity in each fraction was assayed with fluorescence labeled N-glycans as substrates. The endoglycosidase activity was exclusively recovered in the soluble fraction (cytosol fraction) but not in other specific organellar fractions, suggesting that the endoglycosidase would reside predominantly in the cytosol. The quantitative analysis of high-mannose type free N-glycans occurring in each fraction showed that more than 70% of the free N-glycans was recovered from the soluble fraction, suggesting the endoglycosidase would work in the cytosol and the resulting free N-glycans would accumulate in the same fraction. The pumpkin endo-β-GlcNAc-ase (endo-CM) partially purified from the cotyledons showed optimum activity around pH 6.5, supporting this enzyme would reside in the cytosol. Furthermore, the detailed analysis of substrate specificity of endo-CM using various high-mannose type N-glycans showed that the pumpkin enzyme, as well as other plant endo-β-N-acetylglucosaminidases, were highly active toward the high-mannose type glycans bearing the Manα1-2Manα1-3Manβ1-structural unit.  相似文献   

6.
The sugar specificity of Escherichia coli 346 and of the type-1 fimbriae isolated from this organism has been studied by quantitative inhibition of the agglutination of mannan-containing yeast cells. The best inhibitors of the agglutination by the bacteria were the oligosaccharides Manα1→6[Manα1→3]Manα1→6[Manα1→2Manα1→3]ManαOMe, Manα1→6[Manα1→3]Manα1→6[Manα1→3]ManαOMe and Manα1→3Manβ1→4GlcNAc, and the aromatic glycoside p-nitrophenyl α-d-mannoside, all of which were 20–30 times more inhibitory than methyl α-d-mannoside. The disaccharides Manα1→3Man, Manα1→2Man and Manα1→6Man, the tetrasaccharide Manα1→2Manα1→3Manβ1→4GlcNAc and the pentasaccharide Manα1→2Manα1→2Manα1→3Manβ1→4GlcNAc, were all poor inhibitors. A very good correlation was found between the relative inhibitory activity of the different sugars tested with intact bacteria and with the isolated fimbriae. Our findings show that the combining site of the E. coli lectin is an extended one, corresponding to the size of a trisaccharide, that it contains a hydrophobic region, and that it is in the form of a pocket on the surface of the lectin. The combining site fits best the structures found in short oli gomannosidic chains present in N-glycosidically linked glycoproteins.  相似文献   

7.
Jack bean α-mannosidase (JBM) is a well-studied plant vacuolar α-mannosidase, and is widely used as a tool for the enzymatic analysis of sugar chains of glycoproteins. In this study, the JBM digestion profile of hybrid-type N-glycans was examined using pyridylamino (PA-) sugar chains. The digestion efficiencies of the PA-labeled hybrid-type N-glycans Manα1,6(Manα1,3)Manα1,6(GlcNAcβ1,2Manα1,3)Manβ1,4GlcNAcβ1,4GlcNAc-PA (GNM5-PA) and Manα1,6(Manα1,3)Manα1,6(Galβ1,4GlcNAcβ1,2Manα1,3)Manβ1,4GlcNAcβ1,4GlcNAc-PA (GalGNM5-PA) were significantly lower than that of the oligomannose-type N-glycan Manα1,6(Manα1,3)Manα1,6Manβ1,4GlcNAcβ1,4GlcNAc-PA (M4-PA), and the trimming pathways of GNM5-PA and GalGNM5-PA were different from that of M4-PA, suggesting a steric hindrance to the JBM activity caused by GlcNAcβ1-2Man(α) residues of the hybrid-type N-glycans. We also found that the substrate preference of JBM for the terminal Manα1-6Man(α) and Manα1-3Man(α) linkages in the hybrid-type N-glycans was altered by the change in reaction pH, suggesting a pH-dependent change in the enzyme-substrate interaction.  相似文献   

8.
Endo-α-mannosidase, a GH99-family glycoside hydrolase, cleaves α-mannoside linkages with glucose residues. This enzyme is proposed to play a critical role in N-glycan processing for deglucosylation. To measure endo-α-mannosidase activity, we synthesized a fluorescently labeled tetrasaccharide derivative (Glcα1-3Manα1-2Manα1-2Manα1-O–C3H6–NH-Dansyl) in a stereocontrolled manner. The tetrasaccharide skeleton was prepared by step-wise coupling using mannose donors 4 and 7. The 1,2-cis α-glycosidic linkage on the non-reducing end of the glucose residue was constructed by inversion of the stereochemistry of the C-2 hydroxyl group in the α-mannose residue. Finally, the dansyl group was introduced at the reducing end via an aminopropyl linker. This probe successfully measured endo-α-mannosidase activity.  相似文献   

9.
An endo-β-N-acetylglucosaminidase specific for plant glycoprotein oligosaccharides was purified from the culture fluid of a fungus. The Mr of the purified enzyme was 89,000. This enzyme was stable at pH 5.5-7.0, up to 30°C, and showed the highest activity at pH 6.0. Among sugar chains tested, xylose-containing sugar chains (M3X, M3FX, and M2FX) were the most favored substrates. Oligomannose type (M3, M5, and M9) and hybrid type (GNM3) sugar chains were hydrolyzed much more slowly than xylose-containing sugar chains, and a complex type sugar chain (GN2M3) was not hydrolyzed at all by the enzyme. Moreover, the enzyme released sugar chains from native horseradish peroxidase and stem bromelain, which were not hydrolyzed by other endo-β-N-acetylglucosaminidases (Endo H, D, and F). The enzyme could transfer the xylose-containing sugar chain from bromelain to DNS-Asn-GlcNAc-Fuc.  相似文献   

10.
The asparagine-linked sugar chains of the plasma membrane glycoproteins of rat erythrocytes were released as oligosaccharides by hydrazinolysis and labeled by NaB3H4 reduction. The radioactive oligosaccharides were separated into a neutral and at least four acidic fractions by paper electrophoresis. The neutral oligosaccharide fraction was separated into at least 11 peaks upon Bio-Gel P-4 column chromatography. Structural studies of them by sequential exoglycosidase digestion in combination with methylation analysis revealed that they were a mixture of three high mannose-type oligosaccharides and at least 11 complex type oligosaccharides with Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4(±Fucα1 → 6)GlcNAc as their cores and Galβ1 → 4GlcNAc, Galβ1 → 3Galβ1 → 4GlcNAc, and various lengths of Galβ1 → 4GlcNAc repeating chains in their outer chain moieties. Most of the complex-type Oligosaccharides were biantennary, and the tri- and tetraantennary Oligosaccharides contain only the Galβ1 → 3Galβ1 → 4GlcNAc group in their outer chain moieties.  相似文献   

11.
The genome sequencing project on alkaliphilic Bacillus halodurans C-125 revealed a putative endo-β-N-acetylglucosaminidase (Endo-BH), which consists of a signal peptide of 24 amino acids, a catalytic region of 634 amino acids exhibiting 50.1% identity with the endo-β-N-acetylglucosaminidase from Arthrobacter protophormiae (Endo-A), and a C-terminal tail of 220 amino acids. Transformed Escherichia coli cells carrying the Endo-BH gene exhibited endo-β-N-acetylglucosaminidase activity. Recombinant Endo-BH hydrolyzed high-mannose type oligosaccharides and hybrid type oligosaccharides, and showed transglycosylation activity. On deletion of 219 C-terminal amino acid residues of Endo-BH, the wild type level of activity was retained, whereas with deletions of the Endo-A homolog domain, the proteins were expressed as inclusion bodies and these activities were reduced. These results suggest that the enzymatic properties of Endo-BH are similar to those of Endo-A, and that the C-terminal tail does not affect the enzyme activity. Although the C-terminal tail region is not essential for enzyme activity, the sequence is also conserved among endo-β-N-acetylglucosaminidases of various origins.  相似文献   

12.
A bioactive peptide containing a glutamine-linked oligosaccharide was chemo-enzymatically synthesized by use of the solid-phase method of peptide synthesis and the transglycosylation activity of endo-β-N-acetylglucosaminidase. Substance P, a neuropeptide, is an undecapeptide containing two l-glutamine residues. A substance P derivative with an N-acetyl-d-glucosamine residue attached to the fifth or sixth l-glutamine residue from the N-terminal region was chemically synthesized. A sialo complex-type oligosaccharide derived from a glycopeptide of hen egg yolk was added to the N-acetyl-d-glucosamine moiety of the substance P derivative using the transglycosylation activity of endo-β-N-acetylglucosaminidase from Mucor hiemalis, and a substance P derivative with a sialo complex-type oligosaccharide attached to the l-glutamine residue was synthesized. This glycosylated substance P was biologically active, although the activity was rather low, and stable against peptidase digestion. The oligosaccharide moiety attached to the l-glutamine residue of the peptide was not liberated by peptide-N4-(N-acetyl-β-d-glucosaminyl) asparagine amidase F.  相似文献   

13.
The α- and β-N-acetylglucosaminidase activity of the limpet Patella vulgata (L.) is due to two enzymes. One of these enzymes hydrolyses both α- and β-N-acetylglucosaminidases and is referred to α,β-N-acetylglucosaminidase. The other is a β-N-acetylglucosaminidase (EC 3.2.1.30). Both enzymes have been isolated and characterized as glycoproteins containing 12% hexose, mainly galactose. The amino acid, neutral sugar and amino sugar content of the two enzymes is very similar, and the main difference lies in the presence of 9% sialic acid in β-N-acetylglucosaminidase. The molecular weight of α,β-N-acetylglucosaminidase is 217 000 and that of β-N-acetylglucosaminidase is 136 000. Evidence has been obtained for the presence of an additional sub-unit in the α,β-enzyme.  相似文献   

14.
Among the four acidic oligosaccharide fractions obtained by paper electrophoresis of the hydrazinolysate of the plasma membrane glycoproteins of rat erythrocytes, one was further separated into two by prolonged paper electrophoresis using 120-cm paper. Three fractions were mixtures of monosialyl oligosaccharides and two of disialyl oligosaccharides. After desialylation, their neutral portions were fractionated by Bio-Gel P-4 column chromatography and by affinity chromatography using a Con A-Sepharose column. Structural studies of the neutral oligosaccharides, thus obtained, indicated that at least 26 different complex-type oligosaccharides are present as a neutral portion of the acid oligosaccharides. Structurally they can be classified into bi-, tri-, and tetraantennary oligosaccharides with Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4(±Fucα1 → 6)GlcNAcOT as their common cores. Galβ1 → 3Galβ1 → 4GlcNAc, Siaα2 → 3Galβ1 → 4GlcNAc, Siaα2 → 6Galβ1 → 4GlcNAc, and a series of Siaα2 → (Galβ1 → 4GlcNAcβ1 → 3)n · Galβ1 → 4GlcNAc were found as their outer chains. Their structures together with the structures of neutral oligosaccharides reported in the preceding paper indicated that the outer chain moieties of the asparagine-linked sugar chains of rat erythrocyte membrane glycoproteins are formed not by random concerted action of glycosyl transferases in Golgi membrane but by the mechanism in which the formation of one outer chain will regulate the elongation of others.  相似文献   

15.
A simple procedure for the detection of endo-β-N-acetylglucosaminidase H activity is described. The method utilizes N-[14C]methylribonuclease B as substrate. This is prepared from ribonuclease B by reductive alkylation of free amine groups in the protein with [14C]formaldehyde. Because the carbohydrate moiety of ribonuclease B has α-mannosyl residues at nonreducing terminal positions, the radioactive molecule binds to Sepharose-concanavalin A. Endo-β-N-acetylglucosaminidase action releases this mannose-containing oligosaccharide by splitting the di-N-acetylchitobiosyl residue that links it with the peptide and thereby renders the radioactive portion of the molecule unreactive with Sepharose-concanavalin A. This forms the basis of a convenient assay for screening column fractions during the purification of the endoglycosidase. Although protease or α-mannosidase activity might also be detected by the procedure, no difficulties were presented by these enzymes when the assay was used for the preparation of endo-β-N-acetylglucosaminidase H from Streptomyces plicatus.  相似文献   

16.
Endo-β-N-acetylglucosaminidase from Arthrobacter protophormiae was activated by the addition of glucose, mannose, N-acetylglucosamine, and β-allose. While the enzyme did not appear to be significantly affected by the addition of galactose or N-acetylgalactosamine. These results indicate that the C-4 and C-6 positions of the monosaccharide are the most important for enzyme activation. Moreover, the enzyme was activated by the addition of disaccharides such as cellobiose, gentiobiose, and di-N-acetylchitobiose, but not by polysaccharides such as starch and yeast mannan. In the presence of N-acetylglucosamine, the enzyme activation occurred well over pH 4.0 and the Km value of the enzyme for (Man)6(GlcNAc)2-Asn-dansyl changes from 1.2 mM to 3.2 mM.  相似文献   

17.
Two endo-β-N-acetylglucosaminidases (CI and CI) acting on carbohydrate moieties of glycoproteins were highly purified from the culture fluid of Clostridium perfringens. CI had the substrate specificity indistinguishable from that of endo-β-N-acetylglucosaminidase D from Diplococcus pneumoniae. CII showed the specificity similar to that of endo-β-N-acetylglucosaminidase H from Streptomyces griseus but is distinct from the streptomyces enzyme with respect to the relative activity toward ovalbumin glycopeptides and Unit A glycopeptides of thyroglobulin. Both enzymes from C. perfringens were most active at neutral pH and were inhibited by p-chloromercuriphenylsulfonate.  相似文献   

18.
Commercially available fig latex contains several endo-β-N-acetylglucosaminidases which catalyze the reaction: (Man)nG1cNAcβ1→4G1cNAcAsn → (Man)nG1cNAc + G1cNAcAsn. Using (NH4)2SO4 fractionation followed by chromatography on Sephadex G-100 and DEAE-Sephadex A-50, two distinct types of endo-β-N-acetylglucosaminidases have been partially purified and characterized. One, called F-I, hydrolyzes the di-N-acetylchitobiosyl linkage in the glycopeptide, (Man)3(G1cNAc)2Asn prepared from human IgG, much faster than that linkage in the glycopeptides, (Man)5(G1cNAc)2Asn and (Man)6(G1cNAc)2Asn both from ovalbumin. The other, called F-II, hydrolyzes the same linkage in (Man)5(G1cNAc)2-Asn and (Man)6(G1cNAc)2Asn, but not that in (Man)3(G1cNAc)2Asn.  相似文献   

19.
《Carbohydrate research》1998,311(4):219-229
A polyclonal antibody (anti-bupleuran 2IIc/PG-1-IgG) against the “ramified” region (PG-1) of an anti-ulcer pectic polysaccharide was prepared and its antigenic epitopes were analyzed by using several carbohydrases. Enzymatic removal of arabinosyl residues from PG-1 by endo-(1→5)-α-l-arabinanase (from Aspergillus niger) did not reduce the binding ability of anti-bupleuran 2IIc/PG-1-IgG to PG-1. When the endo-(1→5)-α-l-arabinanase-resistant fraction (EA-1) was digested with rhamnogalacturonase A (rRGase A from A. aculeatus), a high-molecular-mass fragment fraction (RA-1) and an oligosaccharide fraction (RA-3) were obtained. RA-3 contained at least four kinds of oligosaccharides liberated from the rhamnogalacturonan core. This partial removal of the rhamnogalacturonan core in EA-1 also did not reduce the binding of the antibody to the polysaccharide. Further digestion of RA-1 with exo-(1→3)-β-d-galactanase (from Irpex lacteus), gave a high-molecular-mass fragment (EXG-1) and a trace of oligosaccharides (EXG-3). Methylation and FABMS analyses indicated that EXG-3 contained mono- and di-galactosyl oligosaccharides possessing terminal GlcA or GlcA4Me. Removal of the EXG-3 fraction from RA-1 by exo-(1→3)-β-d-galactanase significantly reduced the ability of the binding of the antibody to the polysaccharide. When PG-1 was digested with endo-(1→6)-β-d-galactanase (from Trichoderma viride) or β-d-glucuronidase (from A. niger), the reactivities of both enzyme-resistant fractions to the antibody were decreased in comparison with that of PG-1. Both radish arabinogalactan (containing GlcA4Me) and β-d-GlcpA-(1→6)-β-d-Galp-(1→6)-d-Galp were shown to inhibit the reactivity of PG-1 to the antibody by competitive ELISA. These results suggest that 6-linked galactosyl chains containing terminal GlcA or GlcA4Me attached to (1→3)-β-d-galactosyl chains, are important sugar residues in the antigenic epitopes of the “ramified” region of bupleuran 2IIc.  相似文献   

20.
The synthesis of complex asparagine-linked glycans (N-glycans) involves a multi-step process that starts with a five mannose N-glycan structure: [Manα1-6(Manα1-3)Manα1-6][Manα1-3]-R where R?=?Manβ1-4GlcNAcβ1-4GlcNAcβ1-Asn-protein. N-acetylglucosaminyltransferase I (GlcNAc-TI) first catalyzes addition of GlcNAc in β1-2 linkage to the Manα1-3-R terminus of the five-mannose structure. Mannosidase II then removes two Man residues exposing the Manα1-6 terminus that serves as a substrate for GlcNAc-T II and addition of a second GlcNAcβ1-2 residue. The resulting structure is the complex N-glycan: GlcNAcβ1-2Manα1-6(GlcNAcβ1-2Manα1-3)-R. This structure is the precursor to a large assortment of branched complex N-glycans involving four more N-acetylglucosaminyltransferases. This short review describes the experiments (done in the early 1970s) that led to the discovery of GlcNAc-TI and II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号