首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Helicobacter pylori is one of the most common bacterial pathogens, infecting about 50% of the world population. The presence of a pathogenicity island (PAI) in H. pylori has been associated with gastric disease. We present evidence that the H. pylori protein encoded by the cytotoxin-associated gene A ( cagA ) is translocated and phosphorylated in infected epithelial cells. Two-dimensional gel electrophoresis (2-DE) of proteins isolated from infected AGS cells revealed H. pylori strain-specific and time-dependent tyrosine phosphorylation and dephosphorylation of several 125–135 kDa and 75–80 kDa proteins. Immunoblotting studies, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), cell fractionation and confocal microscopy demonstrated that one of the 125–135 kDa proteins represents the H. pylori CagA protein, which is translocated into the host cell membrane and the cytoplasm. Translocation of CagA was dependent on functional cagA gene and virulence ( vir ) genes of a type IV secretion apparatus composed of virB4 , virB7 , virB10 , virB11 and virD4 encoded in the cag PAI of H. pylori . Our findings support the view that H. pylori actively translocates virulence determinants, including CagA, which could be involved in the development of a variety of gastric disease.  相似文献   

2.
The clinical outcome of Helicobacter pylori infection is determined by a complex scenario of interactions between the bacterium and the host. The main bacterial factors associated with colonization and pathogenicity comprise outer membrane proteins including BabA, SabA, OipA, AlpA/B, as well as the virulence factors CagA in the cag pathogenicity island ( cag PAI) and the vacuolating cytotoxin VacA. The multitude of these proteins and allelic variation makes it extremely difficult to test the contribution of each individual factor. Much effort has been put into identifying the mechanism associated with H. pylori -associated carcinogenesis. Interaction between bacterial factors such as CagA and host signal transduction pathways seems to be critical for mediating the induction of membrane dynamics, actin-cytoskeletal rearrangements and the disruption of cell-to-cell junctions as well as proliferative, pro-inflammatory and antiapoptotic nuclear responses. An animal model using the Mongolian gerbil is a useful system to study the gastric pathology of H. pylori infection.  相似文献   

3.
Protein-protein interactions among Helicobacter pylori cag proteins   总被引:4,自引:0,他引:4       下载免费PDF全文
Many Helicobacter pylori isolates contain a 40-kb region of chromosomal DNA known as the cag pathogenicity island (PAI). The risk for development of gastric cancer or peptic ulcer disease is higher among humans infected with cag PAI-positive H. pylori strains than among those infected with cag PAI-negative strains. The cag PAI encodes a type IV secretion system that translocates CagA into gastric epithelial cells. To identify Cag proteins that are expressed by H. pylori during growth in vitro, we compared the proteomes of a wild-type H. pylori strain and an isogenic cag PAI deletion mutant using two-dimensional difference gel electrophoresis (2D-DIGE) in multiple pH ranges. Seven Cag proteins were identified by this approach. We then used a yeast two-hybrid system to detect potential protein-protein interactions among 14 Cag proteins. One heterotypic interaction (CagY/7 with CagX/8) and two homotypic interactions (involving H. pylori VirB11/ATPase and Cag5) were similar to interactions previously reported to occur among homologous components of the Agrobacterium tumefaciens type IV secretion system. Other interactions involved Cag proteins that do not have known homologues in other bacterial species. Biochemical analysis confirmed selected interactions involving five of the proteins that were identified by 2D-DIGE. Protein-protein interactions among Cag proteins are likely to have an important role in the assembly of the H. pylori type IV secretion apparatus.  相似文献   

4.
幽门螺杆菌cag PAI编码的Ⅳ型分泌系统   总被引:1,自引:0,他引:1  
幽门螺杆菌(Helicobacter pylori,H.pylori)是定植于人胃部特定的病原菌,感染呈全球分布,感染率高达50%以上。现已证实它是轻度胃炎,消化性溃疡及胃癌的主要病因。Ⅰ型H.pylori菌株含有一个约40kb的特殊基因片段,即cag致病岛(cytotoxin associated gene pathogenicity island,cag PAI),该片段只出现于致病相关菌株,基因呈高密度分布并编码一个分泌转运系统称为Ⅳ型分泌系统(type Ⅳ secretion system,TFSS),通过转运相关毒素而参与H.pylori诱导上皮细胞细胞内的酪氨酸磷酸化、细胞骨架重排、基垫结构形成、活化核转录因子NF-κB、诱导促炎细胞因子白细胞介素-8的表达等,故在H.pylori的致病中起着关键作用。近年来,研究者们致力于研究Ⅳ型分泌系统的功能,但是对于这个装置是如何转运蛋白进入宿主细胞的确切机制还是知之甚少,因此,对Ⅳ型分泌系统的研究将有助于进一步明确H.pylori致病机制,并为临床诊断和治疗提供新的靶点。  相似文献   

5.
Background:  Helicobacter pylori infection is an important health problem, as it involves approximately 50% of the world's population, causes chronic inflammatory disease and increases the risk of gastric cancer development. H. pylori infection elicits a vigorous immune response, but this does not usually result in bacterial clearance. We have investigated whether the persistence of H. pylori in the host could be partly due to an inability of macrophages to kill this bacterium.
Materials and Methods:  Monocytes and macrophages isolated from the peripheral blood of normal human controls were infected in vitro with five H. pylori isolates. The isolates were characterized for known H. pylori virulence factors; vacuolating cytotoxin (VacA), the cag pathogenicity island ( cag PAI), urease, and catalase by Western blot and polymerase chain reaction analysis. The ability of primary human monocytes and macrophages to kill each of these H. pylori strains was then defined at various time points after cellular infection.
Results:  The five H. pylori strains showed contrasting patterns of the virulence factors. There were different rates of killing for the bacterial strains. Macrophages had less capacity than monocytes to kill three H. pylori strains. There appeared to be no correlation between the virulence factors studied and differential killing in monocytes.
Conclusions:  Primary human monocytes had a higher capacity to kill certain strains of H. pylori when compared to macrophages. The VacA, cag PAI, urease, and catalase virulence factors were not predictive of the capacity to avoid monocyte and macrophage killing, suggesting that other factors may be important in H. pylori intracellular pathogenicity.  相似文献   

6.
Colonization of the human stomach by Helicobacter pylori is an important risk factor for development of gastric cancer. The H. pylori cag pathogenicity island (cag PAI) encodes components of a type IV secretion system (T4SS) that translocates the bacterial oncoprotein CagA into gastric epithelial cells, and CagL is a specialized component of the cag T4SS that binds the host receptor α5β1 integrin. Here, we utilized a mass spectrometry-based approach to reveal co-purification of CagL, CagI (another integrin-binding protein), and CagH (a protein with weak sequence similarity to CagL). These three proteins are encoded by contiguous genes in the cag PAI, and are detectable on the bacterial surface. All three proteins are required for CagA translocation into host cells and H. pylori-induced IL-8 secretion by gastric epithelial cells; however, these proteins are not homologous to components of T4SSs in other bacterial species. Scanning electron microscopy analysis reveals that these proteins are involved in the formation of pili at the interface between H. pylori and gastric epithelial cells. ΔcagI and ΔcagL mutant strains fail to form pili, whereas a ΔcagH mutant strain exhibits a hyperpiliated phenotype and produces pili that are elongated and thickened compared to those of the wild-type strain. This suggests that pilus dimensions are regulated by CagH. A conserved C-terminal hexapeptide motif is present in CagH, CagI, and CagL. Deletion of these motifs results in abrogation of CagA translocation and IL-8 induction, and the C-terminal motifs of CagI and CagL are required for formation of pili. In summary, these results indicate that CagH, CagI, and CagL are components of a T4SS subassembly involved in pilus biogenesis, and highlight the important role played by unique constituents of the H. pylori cag T4SS.  相似文献   

7.
The Helicobacter pylori cag pathogenicity island (cag PAI) encodes components of a type IV secretion system (T4SS) involved in host interaction and pathogenicity. Previously, seven cag PAI proteins were identified as homologs of Agrobacterium tumefaciens Vir proteins, which form a paradigm T4SS. The T pilus composed of the processed VirB2 pilin is an external structural part of the A. tumefaciens T4SS. In H. pylori, cag-dependent assembly of pili has not been observed so far, nor has a pilin (VirB2) ortholog been characterized. We have here identified, using a motif-based search, an H. pylori cag island protein (HP0546) that possesses sequence and predicted structural similarities to VirB2-like pilins of other T4SSs. The HP0546 protein displays interstrain variability in its terminal domains. HP0546 was expressed as a FLAG-tagged fusion protein in Escherichia coli, A. tumefaciens, and H. pylori and was detected as either two or three bands of different molecular masses in the insoluble fraction, indicating protein processing. As reported previously, isogenic H. pylori mutants in the putative cag pilin gene had reduced abilities to induce cag PAI-dependent interleukin-8 secretion in gastric epithelial cells. Fractionation analysis of H. pylori, using a specific antiserum raised against an N-terminal HP0546 peptide, showed that the protein is partially surface exposed and that its surface localization depended upon an intact cag system. By immunoelectron microscopy, HP0546 was localized in surface appendages, with surface exposure of an N-terminal epitope. Pronounced strain-to-strain variability of this predicted surface-exposed part of HP0546 indicates a strong selective pressure for variation in vivo.  相似文献   

8.
Genetic recombination can be important evolutionarily in speeding the adaptation of organisms to new environments and in purging deleterious mutations. Here, we describe polymerase chain reaction (PCR), hybridization and DNA sequence-based evidence of six such exchanges between two strains of Helicobacter pylori during natural mixed infection of a patient in Lithuania. One parent strain contained the 37 kb long, virulence-associated cag pathogenicity island (PAI), and the other strain lacked this PAI. Most H. pylori from the patient had descended from the cag + parent, but had become cag during infection. This had resulted from transfer of DNA containing the 'empty site' allele from the cag strain and homologous recombination, not from excision of the cag PAI without DNA transfer. Other cases of recombination involved genes for an outer membrane protein ( omp 5 and omp 29; also called HP0227 and HP1342) and a putative phosphoenolpyruvate synthase ( ppsA  ; HP0121). Replacement of a short patch of DNA sequence (36–124 bp) was also seen. As the chance of forming any given recombinant is small, the abundance of recombinants in this patient suggests selection for particular recombinant genotypes during years of chronic infection. We suggest that genetic exchange among unrelated H. pylori strains, as documented here, is important because of the diversity of this gastric pathogen and its human hosts. Certain H. pylori recombinants may grow better in a given host than either parent. The vigour of growth, in turn, could impact on the severity of disease that infection can elicit.  相似文献   

9.
Secreted proteins are of general interest from the perspective of bacteria-host interaction. The gastric bacterial pathogen Helicobacter pylori uses a set of secreted and translocated proteins--including outer membrane adhesins, secreted extracellular enzymes and translocated effector proteins--to adapt to its extraordinary habitat, the gastric mucosa. Two major virulence factors of H. pylori are the vacuolating cytotoxin (VacA) and the cag type-IV secretion system and its translocated effector protein, cytotoxin-associated antigen A (CagA). VacA targets not only epithelial cells, but also cells of the immune system and induces immunosuppression. CagA has been shown to interact with a growing set of eucaryotic signaling molecules in phosphorylation-dependent and -independent ways.  相似文献   

10.
Helicobacter pylori cag pathogenicity island (PAI) is a major determinant of gastric injury via induction of several matrix metalloproteinases (MMPs). In the present study, we examined the influence of the cag PAI on gastric infection and MMP-9 production in mice and in cultured cells. A new mouse colonizing Indian H. pylori strain (AM1) that lacks the cag PAI was used to study the cag PAI importance in inflammation. Groups of C57BL/6 mice were inoculated separately with H. pylori strains AM1 and SS1 (cag+), gastric tissues were histologically examined, and bacterial colonization was scored by quantitative culture. Mice infected with either cag+ or cag- H. pylori strains showed gastric inflammation and elevated MMP-3 production. Significant up-regulation of pro-MMP-9 secretion and gene expression in H. pylori infected gastric tissues indicate dispensability of cag PAI for increased pro-MMP-9 secretion and synthesis in mice. In agreement, cell culture studies revealed that both AM1 and SS1 were equipotent in pro-MMP-9 induction in human gastric epithelial cells. Both strains showed moderate increase in MMP-2 activity in vivo and in vitro. In addition, increased secretion of tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and IL-6 induced pro-MMP-9 secretion and synthesis in AM1 or SS1 strain-infected mice suggesting elicitation of pro-inflammatory cytokines by both cag- and cag+ genotype. Moreover, tissue inhibitors of metalloproteinase-1 expression were decreased with increase in pro-MMP-9 induction. These data show that H. pylori may act through different pathways other than cag PAI-mediated for gastric inflammation and contribute to up-regulation of MMP-9 via pro-inflammatory cytokines.  相似文献   

11.
Helicobacter pylori is recognized as the main cause of gastritis and is associated with gastric carcinogenesis. Syndecan-4 represents the major source of heparan sulfate (HS) in the gastric cells. HS proteoglycans expressed on the cell surface constitute targets for H. pylori at the early stage of infection. The aim of this study was to determine whether H. pylori induction of syndecan-4 expression is affected by the virulence characteristics of the infecting strain, namely the cytotoxic-associated gene ( cag ) pathogenicity island (PAI). We observed that individuals infected with highly pathogenic H. pylori strains express syndecan-4 in the foveolar epithelium of the gastric mucosa. The association between the cag PAI status of the infecting strain and syndecan-4 expression was further demonstrated by infection of gastric epithelial cell lines with a panel of cag PAI+ and cag PAI H. pylori strains, showing that expression of syndecan-4 was significantly increased in response to infection with the highly pathogenic strains. Moreover, infection of gastric cells with cag A and cag E mutant strains further confirmed that syndecan-4 induction is dependent on an intact cag PAI. The present study shows that highly pathogenic H. pylori strains induce syndecan-4 expression, both in human gastric mucosa and in gastric cell lines, in a cag PAI-dependent manner.  相似文献   

12.
The majority of humans infected with Helicobacter pylori maintain a lifelong infection with strains bearing the cag pathogenicity island (PAI). H. pylori inhibits T cell responses and evades immunity so the mechanism by which infection impairs responsiveness was investigated. H. pylori caused apoptotic T cell death, whereas Campylobacter jejuni did not. The induction of apoptosis by H. pylori was blocked by an anti-Fas Ab (ZB4) or a caspase 8 inhibitor. In addition, a T cell line with the Fas rendered nonfunctional by a frame shift mutation was resistant to H. pylori-induced death. H. pylori strains bearing the cag PAI preferentially induced the expression of Fas ligand (FasL) on T cells and T cell death, whereas isogenic mutants lacking these genes did not. Inhibiting protein synthesis blocked FasL expression and apoptosis of T cells. Preventing the cleavage of FasL with a metalloproteinase inhibitor increased H. pylori-mediated killing. Thus, H. pylori induced apoptosis in Fas-bearing T cells through the induction of FasL expression. Moreover, this effect was linked to bacterial products encoded by the cag PAI, suggesting that persistent infection with this strain may be favored through the negative selection of T cells encountering specific H. pylori Ags.  相似文献   

13.
Helicobacter pylori is an etiological agent of gastritis, peptic ulcer, and gastric cancer. Human beta-defensin-2 (hBD-2) is an antimicrobial peptide which belongs to one of the most important host defense systems against bacterial infection in several epithelial tissues. We studied the effect of H. pylori on the expression of hBD-2 mRNA in MKN45 gastric mucosal cells. H. pylori, but not culture filtrate, increased the hBD-2 mRNA level in MKN45 cells; the inductive effect of H. pylori was not detected with Intestine 407 cells. Among H. pylori strains, strain OHPC0002, which lacks a cag Pathogenicity Island (PAI), did not induce hBD-2 mRNA in MKN45 cells. These results suggested that H. pylori cag PAI is critical for the induction of hBD-2 mRNA in MKN45 cells. Exposure of MKN45 cells to Salmonella typhimurium, S. enteritidis, S. typhi, and S. dublin, but not Escherichia coli ML35, also resulted in induction of hBD-2 mRNA.  相似文献   

14.
The cagA gene is a key marker for the Helicobacter pylori cag pathogenicity island (PAI), which may vary in composition in different strains with insertion sequence mediated interruptions and deletions of genes. While presence of cagA has been associated with increased risk for peptic ulcer disease and gastric cancer, the precise link with virulence is controversial. We investigated H. pylori from dyspeptics in one location in England (mid-Essex) with reference to the prevalence and distribution by age cohort of different cag PAI forms to determine if presence of the insertion element IS605 had a modifying effect on the severity of associated disease. H. pylori isolated from gastric biopsies over a 4-year period were screened by specific PCR assays for the presence of cagA, cagD, cagE and virD4 genes in the cag PAI, and for the presence of IS605 in the PAI and elsewhere in the genome. Most (68%) of the 166 isolates of H. pylori contained a PAI based on detection of cagA whereas 29% had no detectable PAI using multiple loci. The cagA+ genotype frequencies were similar in the peptic ulcer and non-ulcer dyspepsia-gastritis groups (79% vs. 74%) whereas frequencies in the NUD-oesophagitis and normal mucosa groups were lower (58%) but not significantly different (P>0.41). Genomic IS605 inserts were present at an overall frequency of 32% and were widely distributed with respect to patient age and disease severity. The combined cagA+/IS- strain genotype was common but not significantly associated with PUD compared to endoscopically normal mucosa (P> or =0.807). We concluded that presence of the IS605 element, whether in cagA+ or cagA- strains of H. pylori, did not systematically modify the severity of associated disease in the study population.  相似文献   

15.
BACKGROUND: Helicobacter pylori infection leads to gastritis, peptic ulcer, and gastric cancer, in part due to epithelial damage following bacteria binding to the epithelium. Infection with cag pathogenicity island (PAI) bearing strains of H. pylori is associated with increased gastric inflammation and a higher incidence of gastroduodenal diseases. It is now known that various effector molecules are injected into host epithelial cells via a type IV secretion apparatus, resulting in cytoskeletal changes and chemokine secretion. Whether binding of bacteria and subsequent apoptosis of gastric epithelial cells are altered by cag PAI status was examined in this study. METHODS: AGS, Kato III, and N87 human gastric epithelial cell lines were incubated with cag PAI-positive or cag PAI-negative strains of H. pylori in the presence or absence of clarithromycin. Binding was evaluated by flow cytometry and scanning electron microscopy. Apoptosis was assessed by detection of DNA degradation and ELISA detection of exposed histone residues. RESULTS: cag PAI-negative strains bound to gastric epithelial cells to the same extent as cag PAI-positive strains. Both cag PAI-positive and cag PAI-negative strains induced apoptosis. However, cag PAI-positive strains induced higher levels of DNA degradation. Incubation with clarithromycin inactivated H. pylori but did not affect binding. However, pretreatment with clarithromycin decreased infection-induced apoptosis. CONCLUSIONS: cag PAI status did not affect binding of bacteria to gastric epithelial cells but cag PAI-positive H. pylori induced apoptosis more rapidly than cag PAI-negative mutant strains, suggesting that H. pylori binding and subsequent apoptosis are differentially regulated with regard to bacterial properties.  相似文献   

16.
Helicobacter pylori is one of the most diverse bacterial species that chronically infects more than 70% of Indian population. Interestingly, data showing microdiversity of the H. pylori strains within a particular gastric niche remained scarce. To understand the extent of genetic diversity among H. pylori strains within a given host, 30 patients with gastro-duodenal problems were subjected to endoscopy and from each patient 10 single colonies were isolated. Characterization of each of these 10 single colonies by DNA fingerprinting as well as genotyping of several important genetic markers viz. cagA, vacA, iceA, vapD, cag PAI empty site, IS605, RFLP and two other genetic segments within cag PAI revealed that all of the 30 patients were infected with more than one strain and sometimes strains with 5 to 6 types of genetic variants. Analyses of certain genetic loci showed the microdiversity among the colonies from single patient, which may be due to the recombination events during long-term carriage of the pathogen. These results suggest that most of the patients have acquired H. pylori due to repeated exposure to this pathogen with different genetic make-up, which may increase the possibility of super infections. Genetic exchanges between these unrelated H. pylori strains may support certain H. pylori variant to grow better in a given host than the parental strain and thereby increasing the possibility for the severity of the infection.  相似文献   

17.
18.
Helicobacter pylori strains that harbour the Cag pathogenicity island (Cag PAI) induce interleukin (IL)-8 secretion in gastric epithelial cells, via the activation of NF- kappa B, and are associated with severe inflammation in humans. To investigate the influence of Cag PAI-mediated inflammatory responses on H. pylori adaptation to mice, a selection of H. pylori clinical isolates (n = 12) was cag PAI genotyped and tested in co-culture assays with AGS gastric epithelial cells, and in mouse colonization studies. Six isolates were shown to harbour a complete cag PAI and to induce NF- kappa B activation and IL-8 secretion in AGS cells. Of the eight isolates that spontaneously colonized mice, six had a cag PAI(-) genotype and did not induce pro-inflammatory responses in these cells. Mouse-to-mouse passage of the two cag PAI(+) -colonizing strains yielded host-adapted variants that infected mice with bacterial loads 100-fold higher than those of the respective parental strains (P= 0.001). These mouse-adapted variants were affected in their capacity to induce pro-inflammatory responses in host cells, yet no changes in cag PAI gene content were detected between the strains by DNA microarray analysis. This work provides evidence for in vivo selection of H. pylori bacteria with a reduced capacity to induce inflammatory responses and suggests that such bacteria are better adapted to colonize mice.  相似文献   

19.
Helicobacter pylori is a human-specific gastric pathogen that colonizes over half the world's population. Infection with this bacterium is associated with a spectrum of gastric pathologies ranging from mild gastritis to peptic ulcers and gastric cancer. A strong predictor of severe disease outcome is infection with a bacterial strain harbouring the cag (cytotoxin associated gene) pathogenicity island (PAI), a 40 kb stretch of DNA that encodes homologues of several components of a type IV secretion system (TFSS). One gene within the cag PAI, cagA, has been shown to encode a substrate for the TFSS which is translocated into host cells and causes multiple changes in host cell signalling. Here we review recent advances in the characterization of type IV secretion, the activities of CagA and CagA-independent effects of the TFSS, which are contributing to our understanding of H. pylori pathogenesis.  相似文献   

20.
Paxillin is involved in the regulation of Helicobacter pylori-mediated gastric epithelial cell motility. We investigated the signaling pathways regulating H. pylori-induced paxillin phosphorylation and the effect of the H. pylori virulence factors cag pathogenicity island (PAI) and outer inflammatory protein (OipA) on actin stress fiber formation, cell phenotype, and IL-8 production. Gastric cell infection with live H. pylori induced site-specific phosphorylation of paxillin tyrosine (Y) 31 and Y118 in a time- and concentration-dependent manner. Activated paxillin localized in the cytoplasm at the tips of H. pylori-induced actin stress fibers. Isogenic oipA mutants significantly reduced paxillin phosphorylation at Y31 and Y118 and reduced actin stress fiber formation. In contrast, cag PAI mutants only inhibited paxillin Y118 phosphorylation. Silencing of epidermal growth factor receptor (EGFR), focal adhesion kinase (FAK), or protein kinase B (Akt) expression by small-interfering RNAs or inhibiting kinase activity of EGFR, Src, or phosphatidylinositol 3-kinase (PI3K) markedly reduced H. pylori-induced paxillin phosphorylation and morphologic alterations. Reduced FAK expression or lack of Src kinase activity suppressed H. pylori-induced IL-8 production. Compared with infection with the wild type, infection with the cag PAI mutant and oipA mutant reduced IL-8 production by nearly 80 and 50%. OipA-induced IL-8 production was FAK- and Src-dependent, although a FAK/Src-independent pathway for IL-8 production also exists, and the cag PAI may be mainly involved in this pathway. We propose paxillin as a novel cellular target for converging H. pylori-induced EGFR, FAK/Src, and PI3K/Akt signaling to regulate cytoskeletal reorganization and IL-8 production in part, thus contributing to the H. pylori-induced diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号