首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Regulatory changes have long been hypothesized to play an important role in primate evolution. To identify adaptive regulatory changes in humans, we performed a genome-wide survey for genes in which regulation has likely evolved under natural selection. To do so, we used a multi-species microarray to measure gene expression levels in livers, kidneys, and hearts from six humans, chimpanzees, and rhesus macaques. This comparative gene expression data allowed us to identify a large number of genes, as well as specific pathways, whose inter-species expression profiles are consistent with the action of stabilizing or directional selection on gene regulation. Among the latter set, we found an enrichment of genes involved in metabolic pathways, consistent with the hypothesis that shifts in diet underlie many regulatory adaptations in humans. In addition, we found evidence for tissue-specific selection pressures, as well as lower rates of protein evolution for genes in which regulation evolves under natural selection. These observations are consistent with the notion that adaptive circumscribed changes in gene regulation have fewer deleterious pleiotropic effects compared with changes at the protein sequence level.  相似文献   

3.
4.
Relative insulin deficiency, in response to increased metabolic demand (obesity, genetic insulin resistance, pregnancy and aging) lead to Type2 diabetes. Susceptibility of the type 2 diabetes has a genetic basis, as a subset of people with risk factors (obesity, Insulin Resistance, pregnancy), develop Type2 Diabetes. We aimed to identify ‘cluster’ of overexpressed genes, underlying increased beta cell survival in diabetes resistant C57BL/6J ob/ob mice (compared to diabetes susceptible BTBR ob/ob mice). We used ‘consensus’ overexpression status to identify ‘cluster’ of 11 genes consisting of Aldh18a1, Rfc4, Dynlt3, Prom1, H13, Psen1, Ssr4, Dad1, Anpep, Fam111a and Plk1. Information (biological processes, molecular functions, cellular components, protein-protein interactions/associations, gene deletion/knockout/inhibition studies) of all the genes in ‘cluster’ were collected by text mining using different literature search tools, gene information databases and protein-protein interaction databases. Beta cell specific function of these genes were also inferred using meta analysis tool of Beta Cell Biology Consortium, by studying the expression pattern of these genes in microarray studies related to beta-cell stimulation/injury, pancreas development and growth and cell differentiation. In the ‘clusters’, 6 genes (Dad1, Psen1, Ssr4, Rfc4, H13, Plk1) have a role in cell survival. Only Psen1 was previously identified to have role in successful beta cell compensation. We advocate these genes to be potentially involved in successful beta cell compensation and prevent T2D in humans, by conferring protection against diabetogenic insults.  相似文献   

5.
6.
7.
DNA microarray analysis of Clostridium acetobutylicum was used to examine the genomic-scale gene expression changes during the shift from exponential-phase growth and acidogenesis to stationary phase and solventogenesis. Self-organizing maps were used to identify novel expression patterns of functional gene classes, including aromatic and branched-chain amino acid synthesis, ribosomal proteins, cobalt and iron transporters, cobalamin biosynthesis, and lipid biosynthesis. The majority of pSOL1 megaplasmid genes (in addition to the solventogenic genes aad-ctfA-ctfB and adc) had increased expression at the onset of solventogenesis, suggesting that other megaplasmid genes may play a role in stationary-phase phenomena. Analysis of sporulation genes and comparison with published Bacillus subtilis results indicated conserved expression patterns of early sporulation genes, including spo0A, the sigF operon, and putative canonical genes of the sigma(H) and sigma(F) regulons. However, sigE expression could not be detected within 7.5 h of initial spo0A expression, consistent with the observed extended time between the appearance of clostridial forms and endospore formation. The results were compared with microarray comparisons of the wild-type strain and the nonsolventogenic, asporogenous M5 strain, which lacks the pSOL1 megaplasmid. While some results were similar, the expression of primary metabolism genes and heat shock proteins was higher in M5, suggesting a difference in metabolic regulation or a butyrate stress response in M5. The results of this microarray platform and analysis were further validated by comparing gene expression patterns to previously published Northern analyses, reporter assays, and two-dimensional protein electrophoresis data of metabolic genes (including all major solventogenesis genes), sporulation genes, heat shock proteins, and other solventogenesis-induced gene expression.  相似文献   

8.
9.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) induces degradation of low‐density lipoprotein receptor (LDLR) in the liver. It is being pursued as a therapeutic target for LDL‐cholesterol reduction. Earlier genome‐wide gene expression studies showed that PCSK9 over‐expression in HepG2 cells resulted in up‐regulation of genes in cholesterol biosynthesis and down‐regulation of genes in stress response pathways; however, it was not known whether these changes were directly regulated by PCSK9 or were secondary to PCSK9‐induced changes to the intracellular environment. In order to further understand the biological function of PCSK9 we treated HepG2 cells with purified recombinant wild type (WT) and D374Y gain‐of‐function PCSK9 proteins for 8, 24, and 48 h, and used microarray analysis to identify genome‐wide expression changes and pathways. These results were compared to the changes induced by culturing HepG2 cells in cholesterol‐free medium, mimicking the intracellular environment of cholesterol starvation. We determined that PCSK9‐induced up‐regulation of cholesterol biosynthesis genes resulted from intracellular cholesterol starvation. In addition, we identified novel pathways that are presumably regulated by PCSK9 and are independent of its effects on cholesterol uptake. These pathways included “protein ubiquitination,” “xenobiotic metabolism,” “cell cycle,” and “inflammation and stress response.” Our results indicate that PCSK9 affects metabolic pathways beyond cholesterol metabolism in HepG2 cells. J. Cell. Physiol. 224:273–281, 2010 © 2010 Wiley‐Liss, Inc.  相似文献   

10.
High-density arrays of DNA bound to solid substrates offer a powerful approach to identifying changes in gene expression in response to toxicants. While DNA arrays have been used to explore qualitative changes in gene regulation, less attention has focused on the quantitative aspects of this technology. Arrays containing expressed sequence tags for xenobiotic metabolizing enzymes, proteins associated with glutathione regulation, DNA repair enzymes, heat shock proteins, and housekeeping genes were used to examine gene expression in response to beta-naphthoflavone (beta-NF). Upregulation of cytochrome P4501a1 (Cyp1a1) and 1a2 in mouse liver was maximal 8 h after beta-NF administration. Significant upregulation of Cyp1a2 was noted at beta-NF doses as low as 0.62 and 1.2 mg/kg when gene expression was measured by microarray or Northern blotting, respectively. Maximal Cyp1a2 induction is 5-fold by Northern analysis and 10-fold by microarray. Induction of Cyp1a1 was 15- and 20-fold by Northern and microarray analysis, respectively. The coefficient of variation for spot to spot and slide to slide comparisons was <15%; this variability was smaller than interanimal variability (18-60%). Comparison of mRNA expression in control animals indicated that there are differences in labeling/detection associated with Cy3/Cy5 dyes; accordingly, experiments must include methods for establishing baseline signals for all genes. We conclude that the dynamic range and sensitivity of DNA microarrays on glass slides is comparable to Northern blotting analysis and that variability of the data introduced during spotting and hybridization is less than the interanimal variability.  相似文献   

11.
Burkholderia pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively. As iron regulation of gene expression is common in bacteria, in the present studies, we have used microarray analysis to examine the effects of growth in different iron concentrations on the regulation of gene expression in B. pseudomallei and B. mallei. Gene expression profiles for these two bacterial species were similar under high and low iron growth conditions irrespective of growth phase. Growth in low iron led to reduced expression of genes encoding most respiratory metabolic systems and proteins of putative function, such as NADH-dehydrogenases, cytochrome oxidases, and ATP-synthases. In contrast, genes encoding siderophore-mediated iron transport, heme-hemin receptors, and a variety of metabolic enzymes for alternative metabolism were induced under low iron conditions. The overall gene expression profiles suggest that B. pseudomallei and B. mallei are able to adapt to the iron-restricted conditions in the host environment by up-regulating an iron-acquisition system and by using alternative metabolic pathways for energy production. The observations relative to the induction of specific metabolic enzymes during bacterial growth under low iron conditions warrants further experimentation.  相似文献   

12.

Background  

Large microarray datasets have enabled gene regulation to be studied through coexpression analysis. While numerous methods have been developed for identifying differentially expressed genes between two conditions, the field of differential coexpression analysis is still relatively new. More specifically, there is so far no sensitive and untargeted method to identify gene modules (also known as gene sets or clusters) that are differentially coexpressed between two conditions. Here, sensitive and untargeted means that the method should be able to construct de novo modules by grouping genes based on shared, but subtle, differential correlation patterns.  相似文献   

13.
Neuromedin U (NMU) has been associated with the regulation of food-intake and energy balance in rats. The objective of this study was to identify the sites of gene expression for NMU and the NMU receptor-2 (NMU2R) in the mouse and rat hypothalamus and ascertain the effects of nutritional status on the expression of these genes. In situ hybridization studies revealed that NMU is expressed in several regions of the mouse hypothalamus associated with the regulation of energy balance. Analysis of NMU expression in the obese ob/ob mouse revealed that NMU mRNA levels were elevated in the dorsomedial hypothalamic (DMH) nucleus of obese ob/ob mice compared to lean litter-mates. In addition, NMU mRNA levels were elevated in the DMH of mice fasted for 24 h relative to ad libitum fed controls. The pattern of expression of NMU and NMU2R were more widespread in the hypothalamus of mice than rats. These data provide the first detailed anatomical analysis of the NMU and NMU2R expression in the mouse and advance our knowledge of expression in the rat. The data from the obese rodent models supports the hypothesis that NMU is involved in the regulation of nutritional status.  相似文献   

14.
15.
16.
Carcinogenesis involves the inactivation or inhibition of genes that function as tumor suppressors. Deletions, mutations, or epigenetic silencing of tumor suppressor genes can lead to altered growth, differentiation, and apoptosis. DNA methylation and histone modifications are important epigenetic mechanisms of gene regulation and play essential roles both independently and cooperatively in tumor initiation and progression. Realization that many tumor suppressor genes are silenced by epigenetic mechanisms has stimulated discovery of novel tumor suppressor genes. One of the most useful of these approaches is an epigenetic reactivation screening strategy that combines treatment of cancer cells in vitro with DNA methyltransferase and/or histone deacetylase (HDAC) inhibitors, followed by global gene expression analysis using microarrays, to identify upregulated genes. This approach is most effective when complemented by microarray analyses to identify genes repressed in primary tumors. Recently, using cancer cell lines treated with a DNA methylation inhibitor and/or a HDAC inhibitor in conjunction with cDNA microarray analysis, candidate tumor suppressor genes, which are subject to epigenetic silencing, have been identified in endometrial, colorectal, esophageal, and pancreatic cancers. An increasing number of studies have utilized epigenetic reactivation screening to discover novel tumor suppressor genes in cancer. The results of some of the most recent studies are highlighted in this review.  相似文献   

17.
18.
19.
An acceleration of differentiation, at the expense of proliferation, is observed after exposure of various biological models to low frequency and low amplitude electric and electromagnetic fields. Following these results showing significant modifications, we try to identify the biological mechanism involved at the cell level through microarray screening. For this study, we use epidermis cultures harvested from human abdominoplasty. Two platinum electrodes are used to apply the electric signal. The gene expressions of 38,500 well‐characterized human genes are analyzed using Affymetrix® microarray U133 Plus 2.0 chips. The protocol is repeated on three different patients. After three periods of exposure, a total of 24 chips have been processed. After the application of ELF electric fields, the microarray analysis confirms a modification of the gene expression of epidermis cells. Particularly, four up‐regulated genes (DKK1, TXNRD1, ATF3, and MME) and one down‐regulated gene (MACF1) are involved in the regulation of proliferation and differentiation. Expression of these five genes was also confirmed by real‐time rtPCR in all samples used for microarray analysis. These results corroborate an acceleration of cell differentiation at the expense of cell proliferation. Bioelectromagnetics 32:28–36, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号