首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Transient replication of human papillomavirus (HPV) type 18 DNA was shown to require the viral E1 and E2 proteins. A 108-bp sequence within the long control region (nucleotides 12 to 119) was sufficient to function as the origin, but maximal replication required a region of 177 bp from positions 7800 to 7857 and 1 to 119 of HPV-18. The E1 and E2 proteins of HPV-18 also supported transient replication of plasmids containing the origins of HPV-1a and bovine papillomavirus type 1 to low levels. Interestingly, the level of replication observed with the HPV-6b origin was higher than that obtained with the homologous HPV-18 origin.  相似文献   

3.
Human papillomavirus (HPV) DNA replication requires the viral origin recognition protein E2 and the presumptive viral replicative helicase E1. We now report for the first time efficient DNA unwinding by a purified HPV E1 protein. Unwinding depends on a supercoiled DNA substrate, topoisomerase I, single-stranded-DNA-binding protein, and ATP, but not an origin. Electron microscopy revealed completely unwound molecules. Intermediates contained two single-stranded loops emanating from a single protein complex, suggesting a bidirectional E1 helicase which translocated the flanking DNA in an inward direction. We showed that E2 protein partially inhibited DNA unwinding and that Hsp70 or Hsp40, which we reported previously to stimulate HPV-11 E1 binding to the origin and promote dihexameric E1 formation, apparently displaced E2 and abolished inhibition. Neither E2 nor chaperone proteins were detected in unwinding complexes. These results suggest that chaperones play important roles in the assembly and activation of a replicative helicase in higher eukaryotes. An E1 mutation in the ATP binding site caused deficient binding and unwinding of origin DNA, indicating the importance of ATP binding in efficient helicase assembly on the origin.  相似文献   

4.
5.
6.
BCL-2 family proteins are key regulators of the apoptotic pathway. Antiapoptotic members sequester the BCL-2 homology 3 (BH3) death domains of proapoptotic members such as BAX to maintain cell survival. The antiapoptotic BH3-binding groove has been successfully targeted to reactivate apoptosis in cancer. We recently identified a geographically distinct BH3-binding groove that mediates direct BAX activation, suggesting a new strategy for inducing apoptosis by flipping BAX's 'on switch'. Here we applied computational screening to identify a BAX activator molecule that directly and selectively activates BAX. We demonstrate by NMR and biochemical analyses that the molecule engages the BAX trigger site and promotes the functional oligomerization of BAX. The molecule does not interact with the BH3-binding pocket of antiapoptotic proteins or proapoptotic BAK and induces cell death in a BAX-dependent fashion. To our knowledge, we report the first gain-of-function molecular modulator of a BCL-2 family protein and demonstrate a new paradigm for pharmacologic induction of apoptosis.  相似文献   

7.
The membrane-associated adaptor protein LAX is a linker for activation of T cells (LAT)-like molecule that is expressed in lymphoid tissues. Upon stimulation of T or B cells, it is phosphorylated and interacts with Grb2 and the p85 subunit of PI3K. LAX, however, is not capable of replacing LAT in the TCR signaling pathway. In this study we report that upon T or B cell activation, the LAX protein was up-regulated dramatically. Although disruption of the LAX gene by homologous recombination had no major impact on lymphocyte development, it caused a significant reduction in CD23 expression on mature B cells. Interestingly, naive LAX(-/-) mice had spontaneous germinal center formation. Compared with normal T and B cells, LAX(-/-) T and B cells were hyperresponsive and had enhanced calcium flux, protein tyrosine phosphorylation, MAPK and Akt activation, and cell survival upon engagement of the T or B AgRs. Our data demonstrate that LAX functions as a negative regulator in lymphocyte signaling.  相似文献   

8.
Adaptor proteins, molecules that mediate intermolecular interactions, are now known to be as crucial for lymphocyte activation as are receptors and effectors. Extensive work from numerous laboratories has identified and characterized many of these adaptors, demonstrating their roles as both positive and negative regulators. Studies into the molecular basis for the actions of these molecules shows that they function in various ways, including: recruitment of positive or negative regulators into signalling networks, modulation of effector function by allosteric regulation of enzymatic activity, and by targeting other proteins for degradation. This review will focus on a number of adaptors that are important for lymphocyte function and emphasize the various ways in which these proteins carry out their essential roles.  相似文献   

9.
Besides inducing apoptosis, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) activates NF-κB. The apoptosis signaling pathway of TRAIL is well characterized involving TRAIL receptors, Fas-associated protein with death domain (FADD) and caspase-8. In contrast, the molecular mechanism of TRAIL signaling to NF-κB remains controversial. Here, we characterized the receptor–proximal mediators of NF-κB activation by TRAIL. Deletion of the DD of TRAIL receptors 1 and 2 revealed that it is essential in NF-κB signaling. Because FADD interacts with the TRAIL receptor DD, FADD was tested. RNAi-mediated knockdown of FADD or FADD deficiency in JURKAT T-cell leukemia cells decreased or disabled NF-κB signaling by TRAIL. In contrast, TRAIL-induced activation of NF-κB was maintained upon loss of receptor interacting protein 1 (RIP1) or knockdown of FLICE-like inhibitory protein (FLIP). Exogenous expression of FADD rescued TRAIL-induced NF-κB signaling. Loss-of-function mutations of FADD within the RHDLL motif of the death effector domain, which is required for TRAIL-induced apoptosis, abrogated FADD''s ability to recruit caspase-8 and mediate NF-κB activation. Accordingly, deficiency of caspase-8 inhibited TRAIL-induced activation of NF-κB, which was rescued by wild-type caspase-8, but not by a catalytically inactive caspase-8 mutant. These data establish the mechanism of TRAIL-induced NF-κB activation involving the TRAIL receptor DD, FADD and caspase-8, but not RIP1 or FLIP. Our results show that signaling of TRAIL-induced apoptosis and NF-κB bifurcates downstream of caspase-8.  相似文献   

10.
11.
Gastrins, including amidated gastrin (Gamide) and glycine-extended gastrin (Ggly), are known to accelerate the growth of gastric and colorectal cancer cells by stimulation of proliferation and inhibition of apoptosis. Gamide controls apoptosis by regulation of proteins of the Bcl-2 family and by regulation of the activation of caspases. However the interactions between Ggly and proteins of the Bcl-2 family and caspases are not known. Since in other systems G proteins of the Rho family inhibit apoptosis via interaction with proteins of the Bcl-2 family, leading to changes in caspase activities, we have compared the role of Rho family G proteins in regulation of Bcl-2-like (Bad/Bax/Bcl-xl) protein expression and caspase 3 activation by Ggly and Gamide. The effects of the specific inhibitors C3 (for Rho) and Y-27632 (for ROCK), and of dominant negative mutants of Rac, Cdc42 and PAK, were investigated in the gastric epithelial cell line IMGE-5. Apoptosis was induced by serum starvation and confirmed by annexin V staining and caspase 3 activation. Ggly inhibits caspase 3 activation via a Bcl-2-like protein-mediated pathway which requires activation of both Rho/ROCK and Rac/Cdc42/PAK. Gamide inhibits caspase 3 activation via redundant Bcl-2-like protein-mediated pathways which involve alternative activation of Rac/Cdc42/PAK and Rho/ROCK. Gamide and Ggly differentially activate members of Rho family G proteins which in turn regulate different proteins of the Bcl-2 family leading to changes in caspase 3 activity. The findings offer potential targets for blocking the growth-stimulating effects of these gastrins.  相似文献   

12.
The apolipoprotein E receptor 2 (apoER2) is a member of the low-density lipoprotein receptor family which binds ligands such as reelin, apolipoprotein E and apolipoprotein J/clusterin and has been shown to play roles in neuronal migration during development and in male fertility. The function of apoER2 mainly depends on cellular signaling triggered by ligand binding. Although the receptor is internalized, the mechanism and functional significance of its endocytic trafficking remain unclear. Apolipoprotein E receptor 2 partitions into lipid rafts and interacts with caveolin-1, a feature that could modulate its endocytic behavior. Recent evidence also suggested that apoER2 might be endocytosed by a pathway independent of clathrin. Here, we show that despite a raft association, apoER2 internalization depends on its cytoplasmic FxNPXY motif that is similar to canonical motifs for clathrin-mediated endocytosis. This motif mediates receptor binding to the adaptor protein Dab2, which can interact directly with clathrin. Several inhibitory conditions of clathrin-mediated endocytosis, including expression of the dominant negative forms of eps15 and Dab2, decreased apoER2 internalization. In contrast, treatment with the drug nystatin, which blocks the caveolar/raft internalization pathway, has no effect on the receptor's endocytosis. Neither the transmembrane nor the proline-rich insert of the cytoplasmic domain, which has been previously reported to exclude the receptor from the clathrin-mediated pathway, altered apoER2 endocytic activity. These studies indicate that apoER2 internalizes through a clathrin-mediated pathway and that its association with caveolar and noncaveolar rafts does not determine its endocytosis.  相似文献   

13.
Apoptosis, or programmed cell death, is a vital cellular process often impaired in diseases such as cancer. Aspartic acid-directed proteases known as caspases cleave a broad spectrum of cellular proteins and are central constituents of the apoptotic machinery. Caspases are regulated by a variety of mechanisms including protein phosphorylation. One intriguing mechanism by which protein kinases can modulate caspase pathways is by blocking substrate cleavage through phosphorylation of residues adjacent to caspase cleavage sites. To explore this mechanism in detail, we recently undertook a systematic investigation using a combination of bioinformatics, peptide arrays, and peptide cleavage assays to identify proteins with overlapping protein kinase and caspase recognition motifs (Duncan et al., Sci Signal 4:ra30, 2011). These studies implicated protein kinase CK2 as a global regulator of apoptotic pathways. In this article, we extend the analysis of proteins with overlapping CK2 and caspase consensus motifs to examine the convergence of CK2 with specific caspases and to identify CK2/caspase substrates known to be phosphorylated or cleaved in cells. Given its constitutive activity and elevated expression in cancer, these observations suggest that the ability of CK2 to modulate caspase pathways may contribute to a role in promoting cancer cell survival and raise interesting prospects for therapeutic targeting of CK2.  相似文献   

14.
He W  Staples D  Smith C  Fisher C 《Journal of virology》2003,77(19):10566-10574
Addition of human papillomavirus (HPV) E7 CDK2/cyclin A or CDK2/cyclin E, purified from either insect cells or bacteria, dramatically upregulates histone H1 kinase activity. Activation is substrate specific, with a smaller effect noted for retinoblastoma protein (Rb). The CDK2 stimulatory activity is equivalent in high-risk (HPV type 16 [HPV16] and HPV31) and low-risk (HPV6b) E7. Mutational analyses of HPV16 E7 indicate that the major activity resides in amino acids 9 to 38, spanning CR1 and CR2, and does not require casein kinase II or Rb-binding domain functions. Synthetic peptides spanning HPV16 amino acid residues 9 to 38 also activate CDK2. Peptides containing this sequence that carry biotin on the carboxy terminus, as well as a photoactivated cross-linking group (benzophenone), also activate the complex and covalently associate with the CDK2/cyclin A complex in a specific manner requiring UV. Cross-linking studies that use protein monomers detect association of the E7 peptides with cyclin A but not CDK2. Together, our results indicate a novel mechanism whereby E7 promotes HPV replication by directly altering CDK2 activity and substrate specificity.  相似文献   

15.
16.
High-risk strains of human papillomaviruses (HPVs) cause nearly all cases of cervical cancer as well as a growing number of head and neck cancers. The oncogenicity of these viruses can be attributed to the activities of their two primary oncoproteins, E6 and E7. The E6 protein has among its functions the ability to prevent apoptosis of infected cells through its binding to FADD and caspase 8. A small molecule library was screened for candidates that could inhibit E6 binding to FADD and caspase 8. Flavonols were found to possess this activity with the rank order of myricetin > morin > quercetin > kaempferol = galangin ? (apigenin, 7-hydroxyflavonol, rhamnetin, isorhamnetin, geraldol, datiscetin, fisetin, 6-hydroxyflavonol). Counter screening, where the ability of these chosen flavonols to inhibit caspase 8 binding to itself was assessed, demonstrated that myricetin, morin and quercetin inhibited GST-E6 and His-caspase 8 binding in a specific manner. The structure–activity relationships suggested by these data are unique and do not match prior reports on flavonols in the literature for a variety of anticancer assays.  相似文献   

17.
Signal transducing adaptor protein-2 (STAP-2) is a recently identified adaptor protein that contains pleckstrin and Src homology 2 (SH2)-like domains as well as a YXXQ motif in its C-terminal region. Our previous study in T cells demonstrated that STAP-2 influences FAK protein levels through recruitment of E3 ubiquitin ligase, Cbl, to FAK. In the present study, we found that Cbl directly controls the protein levels and activity of STAP-2. STAP-2 physically interacted with Cbl through its PH and SH2-like domains. Small-interfering RNA-mediated reduction of endogenous Cbl restored STAP-2 protein levels. In contrast, over-expression of Cbl induced STAP-2 degradation. Importantly, Cbl-mediated regulation of STAP-2 protein levels affected Brk/STAP-2-induced STAT3 activation. These results indicate that Cbl regulates STAP-2 protein levels and Brk/STAP-2-mediated STAT3 activation.  相似文献   

18.
Caspase-2 is one of the earliest identified caspases, but the mechanism of caspase-2-induced apoptosis remains unknown. We show here that caspase-2 engages the mitochondria-dependent apoptotic pathway by inducing the release of cytochrome c (Cyt c) and other mitochondrial apoptogenic factors into the cell cytoplasm. In support of these observations we found that Bcl-2 and Bcl-xL can block caspase-2- and CRADD (caspase and RIP adaptor with death domain)-induced cell death. Unlike caspase-8, which can process all known caspase zymogens directly, caspase-2 is completely inactive toward other caspase zymogens. However, like caspase-8, physiological levels of purified caspase-2 can cleave cytosolic Bid protein, which in turn can trigger the release of Cyt c from isolated mitochondria. Interestingly, caspase-2 can also induce directly the release of Cyt c, AIF (apoptosis-inducing factor), and Smac (second mitochondria-derived activator of caspases protein) from isolated mitochondria independent of Bid or other cytosolic factors. The caspase-2-released Cyt c is sufficient to activate the Apaf-caspase-9 apoptosome in vitro. In combination, our data suggest that caspase-2 is a direct effector of the mitochondrial apoptotic pathway.  相似文献   

19.
人乳头状瘤病毒诱导食管上皮永生化细胞的双相分化   总被引:4,自引:0,他引:4  
研究中期永生化食管上皮细胞的表型,细胞遗传学和部份基因的改变,以阐明癌前病变的特征,SHEE是该院人人乳头状瘤病毒HPV18E6E7诱导的永生化上皮,传至61代已开始有少量细胞恶性转化。对永生化中期31代细胞用相差显微镜检查细胞形态改变和细胞生长状态(细胞接触和锚定生长);流式细胞仪检测细胞周期;做染色体众数分析;多重PCR检查c-myc,p53,bcl-2和ras等基因。免疫组化检查细胞角蛋白和鬼臼毒素荧光标记检查肌动蛋白F(F-actin)。软琼脂培养的集落细胞接种SCID小鼠检查成瘤性。Western blot方法检测细胞内HPVE6表达蛋白。结果:培养细胞有两种不同分化形态,分化差的基底细胞和分化好的鳞状上皮;前者角蛋白和F-actin极少,后者含量丰富;细胞接触抑制和锚锭生长特性减弱,分析100个细胞染色体众数分二干系,56条(占30%)和61条(占24%)染色体,核型分析属上超二倍体,亚三倍体,多重PCR检查:c-myc,p53基因上调,bcl-2和ras基因阳性。用优选生长在软琼脂上的克隆细胞接种SCID小鼠,未成瘤;HPV18E6表达蛋白阳性。以HPV18E6E7诱导的食管永生化上皮31代细胞形态出现了双向分化,根据其形态表型,双染色体众数的细胞遗传学改变和某些癌基因上调等特性,可以认为SHEE31细胞是外处于癌前改变。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号