首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Increased eosinophil counts are a major feature of asthmatic airways. Eosinophil recruitment requires migration through epithelium and tissue extracellular matrix by activation of proteases. We assessed the capacity of IL-16, a CD4(+) cell chemotactic factor, to induce migration of eosinophils through a reconstituted basement membrane and evaluated the proteases, mediators, and receptors involved in this migration. IL-16 added to lower chambers of Invasion Chambers elicited eosinophil migration through Matrigel. This effect was decreased by inhibition of the plasminogen-plasmin system (Abs against urokinase plasminogen activator receptor or plasminogen depletion), but not by anti-matrix metalloproteinase-9 Abs. Abs against CD4 also inhibited IL-16-induced eosinophil migration. At the baseline level, few eosinophils (4.6% positive cells with a mean fluorescence of 0.9) expressed surface membrane CD4, while most permeabilized eosinophils (68% positive cells with a mean fluorescence of 18) express the CD4 Ag. TNF-pretreatment increased surface membrane CD4(+) expression by 6-fold as previously described, and increased IL-16-induced cell migration by 2.2-fold. Incubation of eosinophils with IL-16 also increased surface membrane CD4 expression by 5.4-fold, supporting the role of CD4 as receptor for IL-16. Abs against CCR3, eotaxin, or RANTES blocked IL-16-induced migration. In conclusion, IL-16 promotes eosinophil migration in vitro, by activating the plasminogen-plasmin system and increasing the membrane expression of its receptor. This effect is initiated via CD4 and mediated via the release of CCR3 ligand chemokines. Interestingly, most eosinophils express intracellular CD4. Hence, IL-16 may play an important role in the recruitment of blood eosinophils to the bronchial mucosa of asthmatics.  相似文献   

2.
Synthesis and release of leukotriene C4 by human eosinophils   总被引:13,自引:0,他引:13  
When human peripheral blood eosinophils isolated to 92.5% +/- 6.9 purity were stimulated with either the calcium ionophore A23187 or N-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP), immunoreactive leukotriene C4 (LTC4) was initially localized intracellularly and was subsequently released to the external medium in kinetically distinguishable steps. Eosinophils were stimulated with 2.5 microM A23187 in the presence of 20 mM L-serine, a hypochlorous acid scavenger that prevents the oxidative metabolism of sulfidopeptide leukotrienes. Total production of immunoreactive LTC4, the sum of intra- and extracellular LTC4, was complete within 5 to 10 min. At 5, 10, and 30 min, 65.9% +/- 15.2, 42.3% +/- 24.3, and 5.5% +/- 3.9, respectively, of the total amount of LTC4 measured remained intracellular as detected after the media and cells were separated and the latter was extracted with methanol. The time course for the intracellular synthesis and extracellular release of immunoreactive LTC4 from eosinophils pretreated with 5 micrograms/ml cytochalasin B and stimulated with 0.5 microM FMLP was like that obtained with ionophore, although the total LTC4 production was only approximately 10%. The identity of the intracellular LTC4 was confirmed by elution with reverse-phase high pressure liquid chromatography followed by scanning UV spectroscopy, radioimmunoassay, and bioassay. Eosinophils that were stimulated with A23187 in the absence of L-serine metabolized newly synthesized LTC4 to 6-trans-LTB4 diastereoisomers and subclass-specific diastereoisomeric sulfoxides that were identified only in the extracellular medium. Thus the response of purified eosinophils to two different stimuli demonstrates a transient intracellular accumulation of biologically active LTC4, the distinct extracellular release, and the apparent limitation of oxidative metabolism to the extracellular location.  相似文献   

3.
Human blood eosinophils exhibit a hyperactive phenotype in response to chemotactic factors after cell "priming" with IL-5 family cytokines. Earlier work has identified ERK1/2 as molecular markers for IL-5 priming, and in this article, we show that IL-3, a member of the IL-5 family, also augments fMLP-stimulated ERK1/2 phosphorylation in primary eosinophils. Besides ERK1/2, we also observed an enhancement of chemotactic factor-induced Akt phosphorylation after IL-5 priming of human blood eosinophils. Administration of a peptide antagonist that targets the Src family member Lyn before cytokine (IL-5/IL-3) priming of blood eosinophils inhibited the synergistic increase of fMLP-induced activation of Ras, ERK1/2 and Akt, as well as the release of the proinflammatory factor leukotriene C(4). In this study, we also examined a human eosinophil-like cell line HL-60 clone-15 and observed that these cells exhibited significant surface expression of IL-3Rs and GM-CSFRs, as well as ERK1/2 phosphorylation in response to the addition of IL-5 family cytokines or the chemotactic factors fMLP, CCL5, and CCL11. Consistent with the surface profile of IL-5 family receptors, HL-60 clone-15 recapitulated the enhanced fMLP-induced ERK1/2 phosphorylation observed in primary blood eosinophils after priming with IL-3/GM-CSF, and small interfering RNA-mediated knockdown of Lyn expression completely abolished the synergistic effects of IL-3 priming on fMLP-induced ERK1/2 phosphorylation. Altogether, our data demonstrate a central role for Lyn in the mechanisms of IL-5 family priming and suggest that Lyn contributes to the upregulation of the Ras-ERK1/2 and PI3K-Akt cascades, as well as the increased leukotriene C(4) release observed in response to fMLP in "primed" eosinophils.  相似文献   

4.
Eosinophils (Eos) produce large amounts of leukotriene C4 (LTC4) and platelet-activating factor (PAF) in response to calcium ionophore. However, the capacity of naturally occurring soluble agonists to promote lipid mediator formation by Eos is largely unknown. Our previous studies on neutrophils and basophils showed that certain hematopoietic growth factors are important regulators of lipid mediator formation. We examined LTC4 production by normal human Eos from healthy donors in response to soluble agonists with or without preincubation with the cytokines IL-3 and IL-5. Among three agonists (FMLP, C5a, PAF) tested over a wide concentration range, only FMLP induced some LTC4 formation by itself in normal Eos. However, after preincubation with IL-3 or IL-5, Eos produced detectable amounts of LTC4 in response to all three agonists. Eos primed by IL-3 or IL-5 generated at least 1 order of magnitude more LTC4 in response to FMLP as compared to C5a or PAF. FMLP-induced LTC4 production was enhanced by 26 to 635% (n = 16) and 67 to 611% (n = 12) after preincubation with IL-3 or IL-5, respectively. Priming for LTC4 production was concentration dependent occurring at IL-3 or IL-5 concentrations of 3 to 30 ng/ml and required an optimal preincubation period of 90 min. Thus, IL-3 and IL-5 profoundly modulate the production of lipid mediators by Eos in response to the soluble agonists FMLP, C5a, and PAF. Our data further support the importance of these cytokines in inflammatory reactions involving Eos.  相似文献   

5.
Previous work has shown that IL-16/CD4 induces desensitization of both CCR5- and CXCR4-induced migration, with no apparent effect on CCR2b or CCR3. To investigate the functional relationship between CD4 and other chemokine receptors, we determined the effects of IL-16 interaction with CD4 on CXCR3-induced migration. In this study we demonstrate that IL-16/CD4 induced receptor desensitization of CXCR3 on primary human T cells. IL-16/CD4 stimulation does not result in surface modulation of CXCR3 or changes in CXCL10 binding affinity. This effect does require p56(lck) enzymatic activity and the presence of CCR5, because desensitization is not transmitted in the absence of CCR5. Treatment of human T cells with methyl-beta-cyclodextrin, a cholesterol chelator, prevented the desensitization of CXCR3 via IL-16/CD4, which was restored after reloading of cholesterol, indicating a requirement for intact cholesterol. These studies demonstrate an intimate functional relationship among CD4, CCR5, and CXCR3, in which CCR5 can act as an adaptor molecule for CD4 signaling. This process of regulating Th1 cell chemoattraction may represent a mechanism for orchestrating cell recruitment in Th1-mediated diseases.  相似文献   

6.
Eosinophils and basophils, when activated, become major sources of cysteinyl leukotrienes, eicosanoid mediators pertinent to allergic inflammation. We show that the C-C chemokines, eotaxin and RANTES (regulated upon activation normal T cell expressed and secreted), activate eosinophils and basophils for enhanced leukotriene C(4) (LTC(4)) generation by distinct signaling and compartmentalization mechanisms involving the induced formation of new cytoplasmic lipid body organelles. Chemokine-induced lipid body formation and enhanced LTC(4) release were both mediated by CCR3 receptor G protein-linked downstream signaling involving activation of phosphoinositide 3-kinase, extracellular signal-regulated kinases 1 and 2, and p38 mitogen-activated protein kinases. Chemokine-elicited lipid body numbers correlated with increased calcium ionophore-stimulated LTC(4) production; and as demonstrated by intracellular immunofluorescent localization of newly formed eicosanoid, lipid bodies were the predominant sites of LTC(4) synthesis in both chemokine-stimulated eosinophils and chemokine-primed and ionophore-activated eosinophils. Eotaxin and RANTES initiated signaling via phosphoinositide 3-kinase and mitogen-activated protein kinases both elicits the formation of lipid body domains and promotes LTC(4) formation at these specific extranuclear sites.  相似文献   

7.
8.
Human basophils secrete histamine and leukotriene C4 (LTC4) in response to various stimuli, such as Ag and the bacterial product, FMLP. IgE-mediated stimulation also results in IL-4 secretion. However, the mechanisms of these three classes of secretion are unknown in human basophils. The activation of extracellular signal-regulated kinases (ERKs; ERK-1 and ERK-2) during IgE- and FMLP-mediated stimulation of human basophils was examined. Following FMLP stimulation, histamine release preceded phosphorylation of ERKs, whereas phosphorylation of cytosolic phospholipase A2 (cPLA2), and arachidonic acid (AA) and LTC4 release followed phosphorylation of ERKs. The phosphorylation of ERKs was transient, decreasing to baseline levels after 15 min. PD98059 (MEK inhibitor) inhibited the phosphorylation of ERKs and cPLA2 without inhibition of several other tyrosine phosphorylation events, including phosphorylation of p38 MAPK. PD98059 also inhibited LTC4 generation (IC50 = approximately 2 microM), but not histamine release. Stimulation with anti-IgE Ab resulted in the phosphorylation of ERKs, which was kinetically similar to both histamine and LTC4 release and decreased toward resting levels by 30 min. Similar to FMLP, PD98059 inhibited anti-IgE-mediated LTC4 release (IC50, approximately 2 microM), with only a modest effect on histamine release and IL-4 production at higher concentrations. Taken together, these results suggest that ERKs might selectively regulate the pathway leading to LTC4 generation by phosphorylating cPLA2, but not histamine release or IL-4 production, in human basophils.  相似文献   

9.
Eosinophils in tissues are often present in intimate contact with T cells in allergic and parasitic diseases. Resting eosinophils do not express MHC class II proteins or costimulatory B7 molecules and fail to induce proliferation of T cells to Ags. IL-5 and GM-CSF induce MHC class II and B7 expression on eosinophils and have been reported in some studies to induce eosinophils to present Ag to T cells. The cytokine IL-3, like IL-5 and GM-CSF, is a survival and activating factor for eosinophils and the IL-3 receptor shares with the IL-5 and GM-CSF receptors a common signal transducing beta-chain. IL-3-treated eosinophils expressed HLA-DR and B7.2, but not B7.1 on their surface and supported T cell proliferation in response to the superantigen toxic shock syndrome toxin 1, as well as the proliferation of HLA-DR-restricted tetanus toxoid (TT) and influenza hemagglutinin-specific T cell clones to antigenic peptides. This was inhibited by anti-B7.2 mAb. In contrast, IL-3-treated eosinophils were unable to present native TT Ag to either resting or TT-specific cloned T cells. In parallel experiments, eosinophils treated with IL-5 or GM-CSF were also found to present superantigen and antigenic peptides, but not native Ag, to T cells. These results suggest that eosinophils are deficient in Ag processing and that this deficiency is not overcome by cytokines that signal via the beta-chain. Nevertheless, our findings suggest that eosinophils activated by IL-3 may contribute to T cell activation in allergic and parasitic diseases by presenting superantigens and peptides to T cells.  相似文献   

10.
Anaphylatoxin derived from the fifth complement component (C5a) in the presence of IL-3 induces continuous leukotriene C4 generation and IL-4 and IL-13 expression in human basophils for a period of 16-18 h. This indicates that the G protein-coupled C5a receptor (C5aR) can induce long-lasting cellular responses. Using anti-N-terminal C5aR Abs, C-terminal C5a hexapeptide analogs, and pertussis toxin, we demonstrate that the putative activation site of the C5aR is both necessary and sufficient for these late cellular responses. Furthermore, continuous pertussis toxin-sensitive G protein-coupled receptor activation and receptor-ligand interaction is ongoing and required during the entire period of product release. However, the late basophil responses have a more stringent requirement for optimal receptor activation. Leukotriene C4 generation appears to be influenced mostly by the way the receptor is activated, because the most active hexapeptide is a superagonist for this response. By contrast, C5adesarg, lacking the C-terminal arginine, induces minimal lipid mediator formation but is fully active to induce IL-4 production and is even a superagonist for IL-13 release. Nevertheless, IL-4/IL-13 synthesis in response to C5adesarg could be blocked by both C-terminal antagonistic peptide as well as anti-N-terminal C5aR Abs, indicating only minor differences of ligand-receptor interactions between C5a and C5adesarg. Taken together, our data demonstrate that long-lasting and continuous signaling occurs through a limited activation domain of the C5aR, which can differentially promote separate basophil functions.  相似文献   

11.
12.
13.
The extent to which eosinophils constitutively express FcRIII (CD16) is controversial. We were unable to detect this receptor on freshly isolated, peripheral blood eosinophils. The capacity of eosinophils to change their Fc gamma R expression in vitro has not been previously demonstrated. Culture with IFN-gamma for 1 to 2 days induced FcRIII expression on eosinophils. This effect was dose-dependent and significant at concentrations of 100 U/ml IFN-gamma and above. Expression of FcRI (CD64) and FcRII (CDw32) was also upregulated. These increases were inhibited by cycloheximide (10(-6) M), suggesting a requirement for protein synthesis, and dexamethasone (10(-6) M). Northern blot analysis demonstrated the presence of FcRIII mRNA in eosinophils cultured with IFN-gamma for 2 days but not in unstimulated eosinophils. By contrast, culture with IL-3 caused an up-regulation of eosinophil FcRII expression but did not induce expression of FcRI or FcRIII. The FcRIII expressed by eosinophils after IFN-gamma stimulation was functionally active, as shown by the triggering of eosinophil membrane depolarization and LTC4 generation by an anti-CD16 mAb. Treatment of IFN-gamma-stimulated eosinophils with phosphatidylinositol-specific phospholipase C reduced FcRIII expression, suggesting that, like neutrophils, eosinophils express the phosphatidylinositol glycan-linked form of this receptor. Therefore, this study demonstrates that IFN-gamma-treated eosinophils express a functionally active, phosphatidylinositol glycan-anchored form of FcRIII.  相似文献   

14.
The elicitation of delayed-type hypersensitivity (DTH) requires an early-acting Thy-1+ cell that produces an Ag-specific, non-MHC-restricted factor that initiates DTH by sensitizing the local tissue for release of the vasoactive amine serotonin. We characterized the phenotype of this DTH-initiating cell by treating cells from sensitized mice with different antibodies and then either with rabbit C or anti-Ig panning or bead separation to deplete various subpopulations. We then transferred these cells i.v. into naive recipients that were challenged to elicit DTH. Our findings indicate that the early DTH-initiating cell is Thy-1+, Lyt-1+, CD4-, CD8- and CD3-, whereas the classical, late DTH effector T cell is Thy-1+, Lyt-1+, CD4+, CD8-, and CD3+. We hypothesize that DTH-initiating cells are primitive T cells with Ag receptors that can bind Ag without MHC-restriction. This hypothesis was supported by the finding that two different antibodies, that both bind T cell-derived Ag-binding molecules, eliminated the DTH-initiating, cell but did not affect the late component, MHC-restricted CD4+, CD3+ T cell. Additional experiments with antibodies against restricted determinants of the T-200 glycoprotein family (CD45R) showed that the early but not the late cell is positive for B220, which is usually present on B cells, and on some activated T cells. Also, the DTH-initiating cell is Il-2R-, but Il-3R+; whereas the late component DTH T cell is IL-2R+ and IL-3-. Our findings suggest that DTH-initiating cells may be Ag-specific lymphoid precursor cells that arise before final differentiation along the pathway leading to mature T or B cells. Our results indicate that antigen-specific Thy-1+, CD3-, CD4-, CD8- cells function in vivo to initiate DTH reactions.  相似文献   

15.
The infection of CD4-negative cells by variants of tissue culture-adapted human immunodeficiency virus type 1 (HIV-1) or HIV-2 strains has been shown to be mediated by the CXCR4 coreceptor. Here we show that two in vitro-established CD4(-)/CCR5(-)/CXCR4(+) human pre-T-cell lines (A3 and A5) can be productively infected by wild-type laboratory-adapted T-cell-tropic HIV-1 and HIV-2 strains in a CD4-independent, CXCR4-dependent fashion. Despite the absence of CCR5 expression, A3 and A5 cells were susceptible to infection by the simian immunodeficiency viruses SIVmac239 and SIVmac316. Thus, at least in A3 and A5 cells, one or more of the chemokine receptors can efficiently support the entry of HIV and SIV isolates in the absence of CD4. These findings suggest that to infect cells of different compartments, HIV and SIV could have evolved in vivo to bypass CD4 and to interact directly with an alternative receptor.  相似文献   

16.
Previous work has shown that CD4 engagement can promote the development of interleukin-4-producing cells from naive CD4+ T cells activated with anti-CD3 antibody and interleukin-2 in the absence of other exogenous signals, including interleukin-4 itself. When CD44low CD4+ T cells were activated with immobilized anti-CD3 antibody and interleukin-2, they proliferated and produced interferon-gamma but not interleukin-4. Co-immobilization of antibodies to CD3 and CD4 enhanced cell recoveries and induced interleukin-4 as well as interferon-gamma synthesis. Here we show that these effects of CD4 ligation were not observed when anti-CD4 antibody was replaced with another CD4 ligand, interleukin-16, or when the anti-CD3 and anti-CD4 antibodies were spatially separated by immobilization on different beads. Removal of the anti-CD4 antibodies within the first three days of stimulation also prevented the development of detectable interleukin-4-producing cells. The data suggest that interleukin-4-independent priming of interleukin-4-producing cells in this system requires sustained stimulation via both the T cell receptor and CD4 with close physical association between the ligands for these two receptors.  相似文献   

17.
CEACAM1 (also known as CD66a) is a transmembrane glycoprotein that mediates homophilic intercellular interactions that influence cellular growth, immune cell activation, and tissue morphogenesis. Various studies have suggested a link between CEACAM1 and cellular apoptosis, including a recent demonstration that ERK1/2 signaling is triggered downstream of CEACAM1. In this study, we reveal that CEACAM1-long binding confers survival signals to human peripheral blood mononuclear cells. CEACAM-specific antibodies effectively protected peripheral blood mononuclear cells from apoptosis, with this effect being particularly dramatic for primary monocytes that undergo spontaneous apoptosis during in vitro culture. This protective effect was reiterated when using soluble CEACAM1, which binds to cell-surface CEACAM1 via homophilic interactions. Monocyte survival correlated with a CEACAM1-dependent up-regulation of the cellular inhibitor of apoptosis Bcl-2 and the abrogation of caspase-3 activation. CEACAM1 binding triggered a phosphatidylinositol 3-kinase-dependent activation of the protein kinase Akt without influencing the activity of extracellular signal-related kinase ERK, whereas the phosphatidylinositol 3-kinase-specific inhibitor LY294002 effectively blocked the protective effect of CEACAM1. Together, this work indicates that CEACAM1 confers a phosphatidylinositol 3-kinase- and Akt-dependent survival signal that inhibits mitochondrion-dependent apoptosis of monocytes. By controlling both ERK/MEK and PI3K/Akt pathways, CEACAM1 functions as a key regulator of contact-dependent control of cell survival, differentiation, and growth.  相似文献   

18.
Several properties of the leukotriene C4- and leukotriene D4-metabolizing enzymes within human plasma were studied after fractionation of the plasma proteins using ammonium sulfate precipitation. Leukotriene D4-metabolizing enzymes were widely distributed among the fractions obtained. They showed different pH optima (pH 6.5, pH 7.0 and pH greater than or equal to 8.5) and revealed a different degree of thermal stability. The results indicate the presence of more than one enzyme in plasma which interacts with leukotriene D4. EDTA and L-cysteine inhibited the metabolism of leukotriene D4. Two leukotriene C4-metabolizing activities (gamma-glutamyl transpeptidases) differing in their molecular weights were detected after gel filtration. Their molecular weights were estimated to be Mr greater than or equal to 150 000 and Mr between 55 000 and 100 000.  相似文献   

19.
The CD16(+) monocyte (Mo) subset produces proinflammatory cytokines and is expanded in peripheral blood during progression to AIDS, but its contribution to HIV pathogenesis is unclear. In this study, we investigate the capacity of human CD16(+) and CD16(-) Mo subsets to render resting CD4(+) T cells permissive for HIV replication. We demonstrate that CD16(+) Mo preferentially differentiate into macrophages (Mphi) that activate resting T cells for productive HIV infection by producing the CCR3 and CCR4 ligands CCL24, CCL2, CCL22, and CCL17. CD16(+), but not CD16(-), Mo-derived Mphi from HIV-infected and -uninfected individuals constitutively produce CCL24 and CCL2. Furthermore, these chemokines stimulate HIV replication in CD16(-) Mo:T cell cocultures. Engagement of CCR3 and CCR4 by CCL24 and CCL2, respectively, along with stimulation via CD3/CD28, renders T cells highly permissive for productive HIV infection. Moreover, HIV replicates preferentially in CCR3(+) and CCR4(+) T cells. These findings reveal a new pathway of T cell costimulation for increased susceptibility to HIV infection via engagement of CCR3 and CCR4 by chemokines constitutively produced by CD16(+) Mo/Mphi. Thus, expansion of CD16(+) Mo in peripheral blood of HIV-infected patients and their subsequent recruitment into tissues may contribute to chronic immune activation and establishment of viral reservoirs in resting T cells.  相似文献   

20.
After the demonstration of cytophilic IgE immunoglobulins (Ig) on human blood and lung eosinophils, their role in cell activation was studied by eosinophil peroxidase (EPO) assay. Hypodense human eosinophils from filariasis-infected patients were activated by anti-human Ig or various antigens. A selective release of EPO occurred after incubation with anti-human IgE, but not with anti-human IgG. The activation by antigens showed a strict antibody specificity of cytophilic IgE antibodies. The direct involvement of IgE antibodies in activation by the specific antigen was evidenced by inhibition experiments with aggregated human IgE myeloma protein. Circulating IgE antibodies exhibiting the same specificity and able to induce EPO release were detected in the sera from filariasis patients by a passive sensitization assay. Only the hypodense eosinophils were able to release EPO after IgE-dependent activation both in the direct assay and in the passive sensitization test, confirming the functional heterogeneity of human eosinophils. These results suggest that the interaction between IgE antibodies and human eosinophils can play a role both in protective immunity and pathology by releasing active pharmacologic mediators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号