首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Hollick JB  Chandler VL 《Genetics》2001,157(1):369-378
A genetic screen identified two novel gene functions required to maintain mitotically and meiotically heritable gene silencing associated with paramutation of the maize purple plant 1 (pl1) locus. Paramutation at pl1 leads to heritable alterations of pl1 gene regulation; the Pl-Rhoades (Pl-Rh) allele, which typically confers strong pigmentation to juvenile and adult plant structures, changes to a lower expression state termed Pl'-mahogany (Pl'). Paramutation spontaneously occurs at low frequencies in Pl-Rh homozygotes but always occurs when Pl-Rh is heterozygous with Pl'. We identified four mutations that caused increased Pl' pigment levels. Allelism tests revealed that three mutations identified two new maize loci, required to maintain repression 1 (rmr1) and rmr2 and that the other mutation represents a new allele of the previously described mediator of paramutation 1 (mop1) locus. RNA levels from Pl' are elevated in rmr mutants and genetic tests demonstrate that Pl' can heritably change back to Pl-Rh in rmr mutant individuals at variable frequencies. Pigment levels controlled by two pl1 alleles that do not participate in paramutation are unaffected in rmr mutants. These results suggest that RMR functions are intimately involved in maintaining the repressed expression state of paramutant Pl' alleles. Despite strong effects on Pl' repression, rmr mutant plants have no gross developmental abnormalities even after several generations of inbreeding, implying that RMR1 and RMR2 functions are not generally required for developmental homeostasis.  相似文献   

4.
5.
Mutations affecting the heritable maintenance of epigenetic states in maize identify multiple small RNA biogenesis factors including NRPD1, the largest subunit of the presumed maize Pol IV holoenzyme. Here we show that mutations defining the required to maintain repression7 locus identify a second RNA polymerase subunit related to Arabidopsis NRPD2a, the sole second largest subunit shared between Arabidopsis Pol IV and Pol V. A phylogenetic analysis shows that, in contrast to representative eudicots, grasses have retained duplicate loci capable of producing functional NRPD2-like proteins, which is indicative of increased RNA polymerase diversity in grasses relative to eudicots. Together with comparisons of rmr7 mutant plant phenotypes and their effects on the maintenance of epigenetic states with parallel analyses of NRPD1 defects, our results imply that maize utilizes multiple functional NRPD2-like proteins. Despite the observation that RMR7/NRPD2, like NRPD1, is required for the accumulation of most siRNAs, our data indicate that different Pol IV isoforms play distinct roles in the maintenance of meiotically-heritable epigenetic information in the grasses.  相似文献   

6.
7.
Paramutations represent directed and meiotically-heritable changes in gene regulation leading to apparent violations of Mendelian inheritance. Although the mechanism and evolutionary importance of paramutation behaviors remain largely unknown, genetic screens in maize (Zea mays) identify five components affecting 24 nucleotide RNA biogenesis as required to maintain repression of a paramutant purple plant1 (pl1) allele. Currently, the RNA polymerase IV largest subunit represents the only component also specifying proper development. Here we identify a chromodomain helicase DNA-binding 3 (CHD3) protein orthologous to Arabidopsis (Arabidopsis thaliana) PICKLE as another component maintaining both pl1 paramutation and normal somatic development but without affecting overall small RNA biogenesis. In addition, genetic tests show this protein contributes to proper male gametophyte function. The similar mutant phenotypes documented in Arabidopsis and maize implicate some evolutionarily-conserved gene regulation while developmental defects associated with the two paramutation mutants are largely distinct. Our results show that a CHD3 protein responsible for normal plant ontogeny and sperm transmission also helps maintain meiotically-heritable epigenetic regulatory variation for specific alleles. This finding implicates an intersection of RNA polymerase IV function and nucleosome positioning in the paramutation process.  相似文献   

8.
经典遗传学的研究方法为许多遗传性疾病和遗传相关性疾病的预防、诊断和治疗提供了在分子水平上的直接线索,然而人类疾病的遗传表现始终存在着经典遗传学法则所不能解释的现象。副突变(paramutation)是上世纪50年代首次在玉米中发现的一种非孟氏遗传模式,其传递的等位基因不存在核苷酸序列的差异,提示了表观遗传机制可能参与了基因表达和表型的可遗传变化。近期的研究发现关于副突变现象的解释可能涉及一种新的表观遗传学调控机制,即由RNA(特别是非编码RNA)引发的基因组改变参与了副突变的发生和维持。其中DNA甲基转移酶II所介导的RNA甲基化发挥了极其重要的作用。对副突变及其机制的研究不仅能够深化人类对遗传和生命本质的认识,还有助于开拓在生物工程和疾病诊疗等应用领域的新思路。本文综述了副突变的分子机制和研究进展,并且探讨了副突变在疾病研究和基因治疗中的应用前景。  相似文献   

9.
Recent studies have identified a conserved WG/GW‐containing motif, known as the Argonaute (AGO) hook, which is involved in the recruitment of AGOs to distinct components of the eukaryotic RNA silencing pathways. By using this motif as a model to detect new components in plant RNA silencing pathways, we identified SPT5‐like, a plant‐specific AGO4‐interacting member of the nuclear SPT5 (Suppressor of Ty insertion 5) RNA polymerase (RNAP) elongation factor family that is characterized by the presence of a carboxy‐terminal extension with more than 40 WG/GW motifs. Knockout SPT5‐like mutants show a decrease in the accumulation of several 24‐nt RNAs and hypomethylation at different loci revealing an implication in RNA‐directed DNA methylation (RdDM). Here, we propose that SPT5‐like emerged in plants as a facultative RNAP elongation factor. Its plant‐specific origin and role in RdDM might reflect functional interactions with plant‐specific RNA Pols required for RdDM.  相似文献   

10.
11.
DNA methylation is an important epigenetic mark. In plants, de novo DNA methylation occurs mainly through the RNA-directed DNA methylation (RdDM) pathway. Researchers have previously inferred that a flowering regulator, MULTICOPY SUPPRESSOR OF IRA1 4 (MSI4)/FVE, is involved in non-CG methylation at several RdDM targets, suggesting a role of FVE in RdDM. However, whether and how FVE affects RdDM genome-wide is not known. Here, we report that FVE is required for DNA methylation at thousands of RdDM target regions. In addition, dysfunction of FVE significantly reduces 24-nucleotide siRNA accumulation that is dependent on factors downstream in the RdDM pathway. By using chromatin immunoprecipitation and sequencing (ChIP-seq), we show that FVE directly binds to FVE-dependent 24-nucleotide siRNA cluster regions. Our results also indicate that FVE may function in RdDM by physically interacting with RDM15, a downstream factor in the RdDM pathway. Our study has therefore revealed that FVE, by associating with RDM15, directly regulates DNA methylation and siRNA accumulation at a subset of RdDM targets.  相似文献   

12.
13.
DNA methylation is an evolutionarily conserved epigenetic modification that is critical for gene silencing and the maintenance of genome integrity. In Arabidopsis thaliana, the de novo DNA methyltransferase, domains rearranged methyltransferase 2 (DRM2), is targeted to specific genomic loci by 24 nt small interfering RNAs (siRNAs) through a pathway termed RNA-directed DNA methylation (RdDM). Biogenesis of the targeting siRNAs is thought to be initiated by the activity of the plant-specific RNA polymerase IV (Pol-IV). However, the mechanism through which Pol-IV is targeted to specific genomic loci and whether factors other than the core Pol-IV machinery are required for Pol-IV activity remain unknown. Through the affinity purification of nuclear RNA polymerase D1 (NRPD1), the largest subunit of the Pol-IV polymerase, we found that several previously identified RdDM components co-purify with Pol-IV, namely RNA-dependent RNA polymerase 2 (RDR2), CLASSY1 (CLSY1), and RNA-directed DNA methylation 4 (RDM4), suggesting that the upstream siRNA generating portion of the RdDM pathway may be more physically coupled than previously envisioned. A homeodomain protein, SAWADEE homeodomain homolog 1 (SHH1), was also found to co-purify with NRPD1; and we demonstrate that SHH1 is required for de novo and maintenance DNA methylation, as well as for the accumulation of siRNAs at specific loci, confirming it is a bonafide component of the RdDM pathway.  相似文献   

14.
Higher plants have evolved multiple RNA-dependent RNA polymerases (RDRs), which work with Dicer-like (DCL) proteins to produce different classes of small RNAs with specialized molecular functions. Here we report that OsRDR6, the rice (Oryza sativa L.) homolog of Arabidopsis RDR6, acts in the biogenesis of various types and sizes of small RNAs. We isolated a rice osrdr6-1 mutant, which was temperature sensitive and showed spikelet defects. This mutant displays reduced accumulation of tasiR-ARFs, the conserved trans-acting siRNAs (tasiRNAs) derived from the TAS3 locus, and ectopic expression of tasiR-ARF target genes, the Auxin Response Factors (including ARF2 and ARF3/ETTIN). The loss of tasiR-mediated repression of ARFs in osrdr6-1 can explain its morphological defects, as expression of two non-targeted ARF3 gene constructs (ARF3muts) in a wild-type background mimics the osrdr6 and osdcl4-1 mutant phenotypes. Small RNA high-throughput sequencing also reveals that besides tasiRNAs, 21-nucleotide (nt) phased small RNAs are also largely dependent on OsRDR6. Unexpectedly, we found that osrdr6-1 has a strong impact on the accumulation of 24-nt phased small RNAs, but not on unphased ones. Our work uncovers the key roles of OsRDR6 in small RNA biogenesis and directly illustrates the crucial functions of tasiR-ARFs in rice development.  相似文献   

15.
16.
17.
18.
Argonaute (AGO) family proteins are conserved key components of small RNA‐induced silencing pathways. In the RNA‐directed DNA methylation (RdDM) pathway in Arabidopsis, AGO6 is generally considered to be redundant with AGO4. In this report, our comprehensive, genomewide analyses of AGO4‐ and AGO6‐dependent DNA methylation revealed that redundancy is unexpectedly negligible in the genetic interactions between AGO4 and AGO6. Immunofluorescence revealed that AGO4 and AGO6 differ in their subnuclear co‐localization with RNA polymerases required for RdDM. Pol II and AGO6 are absent from perinucleolar foci, where Pol V and AGO4 are co‐localized. In the nucleoplasm, AGO4 displays a strong co‐localization with Pol II, whereas AGO6 co‐localizes with Pol V. These patterns suggest that RdDM is mediated by distinct, spatially regulated combinations of AGO proteins and RNA polymerases. Consistently, Pol II physically interacts with AGO4 but not AGO6, and the levels of Pol V‐dependent scaffold RNAs and Pol V chromatin occupancy are strongly correlated with AGO6 but not AGO4. Our results suggest that AGO4 and AGO6 mainly act sequentially in mediating small RNA‐directed DNA methylation.  相似文献   

19.
Studies have identified a sub‐group of SGS3‐LIKE proteins including FDM1–5 and IDN2 as key components of RNA‐directed DNA methylation pathway (RdDM). Although FDM1 and IDN2 bind RNAs with 5′ overhangs, their functions in the RdDM pathway remain to be examined. Here we show that FDM1 interacts with itself and with IDN2. Gel filtration suggests that FDM1 may exist as a homodimer in a heterotetramer complex in vivo. The XH domain of FDM1 mediates the FDM1–FDM1 and FDM1–IDN2 interactions. Deletion of the XH domain disrupts FDM1 complex formation and results in loss‐of‐function of FDM1. These results demonstrate that XH domain‐mediated complex formation of FDM1 is required for its function in RdDM. In addition, FDM1 binds unmethylated but not methylated DNAs through its coiled‐coil domain. RNAs with 5′ overhangs does not compete with DNA for binding by FDM1, indicating that FDM1 may bind DNA and RNA simultaneously. These results provide insight into how FDM1 functions in RdDM.  相似文献   

20.
Epigenetic regulation shapes normal and pathological mammalian development and physiology. Our previous work showed that Kit RNAs injected into fertilized mouse eggs can produce heritable epigenetic defects, or paramutations, with relevant loss-of-function pigmentation phenotypes, which affect adult phenotypes in multiple succeeding generations of mice. Here, we illustrate the relevance of paramutation to pathophysiology by injecting fertilized mouse eggs with RNAs targeting Cdk9, a key regulator of cardiac growth. Microinjecting fragments of either the coding region or the related microRNA miR-1 led to high levels of expression of homologous RNA, resulting in an epigenetic defect, cardiac hypertrophy, whose efficient hereditary transmission correlated with the presence of miR-1 in the sperm nucleus. In this case, paramutation increased rather than decreased expression of Cdk9. These results highlight the diversity of RNA-mediated epigenetic effects and may provide a paradigm for clinical cases of familial diseases whose inheritance is not fully explained in Mendelian terms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号