首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Krp1, also called sarcosin, is a cardiac and skeletal muscle kelch repeat protein hypothesized to promote the assembly of myofibrils, the contractile organelles of striated muscles, through interaction with N-RAP and actin. To elucidate its role, endogenous Krp1 was studied in primary embryonic mouse cardiomyocytes. While immunofluorescence showed punctate Krp1 distribution throughout the cell, detergent extraction revealed a significant pool of Krp1 associated with cytoskeletal elements. Reduction of Krp1 expression with siRNA resulted in specific inhibition of myofibril accumulation with no effect on cell spreading. Immunostaining analysis and electron microscopy revealed that cardiomyocytes lacking Krp1 contained sarcomeric proteins with longitudinal periodicities similar to mature myofibrils, but fibrils remained thin and separated. These thin myofibrils were degraded by a scission mechanism distinct from the myofibril disassembly pathway observed during cell division in the developing heart. The data are consistent with a model in which Krp1 promotes lateral fusion of adjacent thin fibrils into mature, wide myofibrils and contribute insight into mechanisms of myofibrillogenesis and disassembly.  相似文献   

2.
3.
Actin cytoskeleton profoundly influence a variety of signaling events, including those related to cell growth, survival and differentiation. Recent evidence have provided insights into the mechanisms underlying the ability of cytoskeleton to regulate signal transduction cascades involved in muscle development. This review will deal with the most recent aspects of this field paying particular attention to the role played by actin dynamics in the induction of skeletal muscle-specific genes.  相似文献   

4.
5.
6.
7.
Regular aerobic exercise reduces risk of cardiovascular disease far more effectively than any pharmaceutical agent. The precise mechanisms contributing to these health benefits are unknown. Currently, much of our knowledge regarding the molecular regulators of skeletal muscle phenotype remodeling in response to muscle activity is derived from rodent models. Over the past five years large scale gene analysis has emerged as a promising research strategy for studying complex processes in human tissue. This review will principally discuss the application of large scale gene expression profiling to study the molecular responses to longitudinal aerobic exercise training studies in humans. The focus is largely on the Affymetrix technology platform, as this can be most easily compared, in a quantitative manner, across laboratories. Indeed, there are compelling reasons to adopt a common standard to obtain maximum synergy across complex, expensive and invasive human studies. Direct comparisons between array data sets can be made, and these should be considered novel 'experiments', often providing great insight into disease mechanisms. Weaknesses in existing human studies are identified and future objectives are discussed.  相似文献   

8.
The BTB-Kelch protein Krp1 is highly and specifically expressed in skeletal muscle, where it is proposed to have a role in myofibril formation. We observed significant upregulation of Krp1 in C2 cells early in myoblast differentiation, well before myofibrillogenesis. Krp1 has a role in cytoskeletal organization and cell motility; since myoblast migration and elongation/alignment are important events in early myogenesis, we hypothesized that Krp1 is involved with earlier regulation of differentiation. Krp1 protein levels were detectable by 24 h after induction of differentiation in C2 cells and were significantly upregulated by 48 h, i.e., following the onset myogenin expression and preceding myosin heavy chain (MHC) upregulation. Upregulation of Krp1 required a myogenic stimulus as signaling derived from increased myoblast cell density was insufficient to activate Krp1 expression. Examination of putative Krp1 proximal promoter regions revealed consensus E box elements associated with myogenic basic helix-loop-helix binding. The activity of a luciferase promoter-reporter construct encompassing this 2,000-bp region increased in differentiating C2 myoblasts and in C2 cells transfected with myogenin and/or MyoD. Knockdown of Krp1 via short hairpin RNA resulted in increased C2 cell number and proliferation rate as assessed by bromodeoxyuridine incorporation, whereas overexpression of Krp1-myc had the opposite effect; apoptosis was unchanged. No effects of changed Krp1 protein levels on cell migration were observed, either by scratch wound assay or live cell imaging. Paradoxically, both knockdown and overexpression of Krp1 inhibited myoblast differentiation assessed by expression of myogenin, MEF2C, MHC, and cell fusion.  相似文献   

9.
The serine protease thrombin has been proposed to be involved in neuromuscular plasticity. Its specific receptor "protease activated receptor-1" (PAR-1), a G protein-coupled receptor, has been shown to be expressed in myoblasts but not after fusion (Suidan et al., 1996 J Biol Chem 271:29162-29169). In the present work we have investigated the expression of PAR-1 during rat skeletal muscle differentiation both in vitro and in vivo. Primary cultures of rat foetal skeletal muscle, characterized by their spontaneous contractile activity, were used for exploration of PAR-1 by RT-PCR, immunocytochemistry and Western blotting. Our results show that PAR-1 mRNA and protein are both present in myoblasts and myotubes. Incubation of myotubes loaded with fluo-3-AM in presence of thrombin (200 nM) or PAR-1 agonist peptide (SFLLRN, 500 microM), induced the intracellular release of calcium indicating the activation of PAR-1. Blockade of contractile activity by tetrodotoxin (TTX, 6 nM) did not modify either PAR-1 synthesis or its cellular localization. Investigation of PAR-1 on rat muscle cryostat sections at Day 18 of embryogenesis and postnatal Days 1, 5, and 10 indicated that this protein is first expressed in the cytoplasm and that it later localizes to the membrane. Moreover, its expression correlates with myosin heavy chain transitions occurring during post-natal period and is restricted to primary fibers. Taken together, these results suggest that PAR-1 expression is not related to contractile activity but to myogenic differentiation.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
Welle S  Tawil R  Thornton CA 《PloS one》2008,3(1):e1385
There is sexual dimorphism of skeletal muscle, the most obvious feature being the larger muscle mass of men. The molecular basis for this difference has not been clearly defined. To identify genes that might contribute to the relatively greater muscularity of men, we compared skeletal muscle gene expression profiles of 15 normal men and 15 normal women by using comprehensive oligonucleotide microarrays. Although there were sex-related differences in expression of several hundred genes, very few of the differentially expressed genes have functions that are obvious candidates for explaining the larger muscle mass of men. The men tended to have higher expression of genes encoding mitochondrial proteins, ribosomal proteins, and a few translation initiation factors. The women had >2-fold greater expression than the men (P<0.0001) of two genes that encode proteins in growth factor pathways known to be important in regulating muscle mass: growth factor receptor-bound 10 (GRB10) and activin A receptor IIB (ACVR2B). GRB10 encodes a protein that inhibits insulin-like growth factor-1 (IGF-1) signaling. ACVR2B encodes a myostatin receptor. Quantitative RT-PCR confirmed higher expression of GRB10 and ACVR2B genes in these women. In an independent microarray study of 10 men and 9 women with facioscapulohumeral dystrophy, women had higher expression of GRB10 (2.7-fold, P<0.001) and ACVR2B (1.7-fold, P<0.03). If these sex-related differences in mRNA expression lead to reduced IGF-1 activity and increased myostatin activity, they could contribute to the sex difference in muscle size.  相似文献   

18.
A rat adult skeletal muscle probe (Asm15) originated from a rhabdomyosarcoma was used to isolate the human homologous sequence from a placenta cDNA library. Among several positive clones the longest EcoRI-EcoRI insert (ASM1) obtained was 1875 bp long with 72% homology with rat Asm15 cDNA sequence. Important variations of ASM1 RNA level were observed in different adult skeletal muscles. Expression of a 29kD ASM1 protein was demonstrated in human adult skeletal muscle lysates using an antiserum (PB1579) raised against the C terminal region of the rat Asm15 protein. The human ASM gene was assigned by somatic cell analysis with human (ASM1) and rat (Asm15) probes to chromosome 11, and by in situ hybridization with the human probe to 11p15, a chromosome region involved in human embryonal rhabdomyosarcomas. Except for the presence of a HindII restriction site, the results obtained for the restriction map and the sequence of ASM1 cDNA (data not shown) exhibited extensive homology with the human H19 DNA sequence which have been mapped with a mouse probe also in 11p15. This suggests that ASM/Asm and H19 may represent the same sequence (in this hypothesis the presence of the supplementary HindII site in our ASM1 probe is explained by polymorphic variability). However it was reported that human and mouse H19 mRNA did not encode for a protein but acted as an RNA molecule whereas in our present study ASM protein was detected in human adult skeletal muscle. This could be explained by important regulation of ASM protein expression during development and cell differentiation. However we cannot exclude for the different species studied (mouse, rat, and man) the hypothesis that H19 and ASM/Asm mRNA may represent two distinct messengers from the same gene or even from duplicated genes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号