首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
何珊  张令强 《遗传》2015,37(9):911-917
蛋白质泛素化修饰过程在调节各种细胞生物学功能的过程中发挥了非常重要的作用,如细胞周期进程、DNA损伤修复、信号转导和各种蛋白质膜定位等。泛素化修饰可分为多聚泛素化修饰和单泛素化修饰。多聚泛素化修饰系统可以通过对底物连接不同类型的多泛素化链调节蛋白质的功能。多聚泛素化修饰中已知7种泛素链连接方式均为泛素内赖氨酸连接方式。近几年发现了第8种类型的泛素链连接形式即线性泛素化,其泛素链的连接方式是由泛素甲硫氨酸的氨基基团与另一泛素甘氨酸的羧基基团相连形成泛素链标记。目前研究表明线性泛素化修饰在先天性免疫和炎症反应等多个过程中发挥着非常重要的作用。募集线性泛素链的泛素连接酶E3被称为LUBAC复合体,其组成底物以及其活性调控机制和功能所知甚少。本文综述了募集线性泛素化链的泛素连接酶、去泛素化酶、底物等活性调控机制及其在先天性免疫等多个领域中的功能,分析了后续研究方向,以期为相关研究提供参考。  相似文献   

2.
Ubiquitin and ubiquitin-like proteins are known to be covalently conjugated to a variety of cellular substrates via a three-step enzymatic pathway. These modifications lead to the degradation of substrates or change its functional status. The ubiquitin-activating enzyme (E1) plays a key role in the first step of ubiquitination pathway to activate ubiquitin or ubiquitin-like proteins. Ubiquitin-activating enzyme E1-domain containing 1 (UBE1DC1) had been proved to activate an ubiquitin-like protein, ubiquitin-fold modifier 1 (Ufm1), by forming a high-energy thioester bond. In this report, UBE1DC1 is proved to activate another ubiquitin-like protein, SUMO2, besides Ufm1, both in vitro and in vivo by immunological analysis. It indicated that UBE1DC1 could activate two different ubiquitin-like proteins, SUMO2 and Ufm1, which have no significant similarity with each other. Subcellular localization in AD293 cells revealed that UBE1DC1 was especially distributed in the cytoplasm; whereas UBE1DC1 was mainly distributed in the nucleus when was cotransfected with SUMO2. It presumed that UBE1DC1 greatly activated SUMO2 in the nucleus or transferred activated-SUMO2 to nucleus after it conjugated SUMO2 in the cytoplasm.  相似文献   

3.
4.
Ubiquitination is one of the most abundant types of protein post‐translational modification (PTM) in plant cells. The importance of ubiquitination in the regulation of many aspects of plant immunity has been increasingly appreciated in recent years. Most of the studies linking ubiquitination to the plant immune system, however, have been focused on the E3 ubiquitin ligases and the conventional ubiquitination that leads to the degradation of the substrate proteins by the 26S proteasome. By contrast, our knowledge about the role of unconventional ubiquitination that often serves as non‐degradative, regulatory signal remains a significant gap. We discuss, in this review, the recent advances in our understanding of ubiquitination in the modulation of plant immunity, with a particular focus on the E3 ubiquitin ligases. We approach the topic from a perspective of two broadly defined types of ubiquitination in an attempt to highlight the importance, yet current scarcity, in our knowledge about the regulation of plant immunity by unconventional ubiquitination.  相似文献   

5.
Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the ''ubiquitin code''. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiquitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation.  相似文献   

6.
7.
The endoplasmic reticulum (ER) is a large, dynamic, and multifunctional organelle. ER protein homeostasis is essential for the coordination of its diverse functions and depends on ER‐associated protein degradation (ERAD). The latter process selects target proteins in the lumen and membrane of the ER, promotes their ubiquitination, and facilitates their delivery into the cytosol for degradation by the proteasome. Originally characterized for a role in the degradation of misfolded proteins and rate‐limiting enzymes of sterol biosynthesis, the many branches of ERAD now appear to control the levels of a wider range of substrates and influence more broadly the organization and functions of the ER, as well as its interactions with adjacent organelles. Here, we discuss recent mechanistic advances in our understanding of ERAD and of its consequences for the regulation of ER functions.  相似文献   

8.
Ubiquitination is a regulated post-translational modification that conjugates ubiquitin (Ub) to lysine residues of target proteins and determines their intracellular fate. The canonical role of ubiquitination is to mediate degradation by the proteasome of short-lived cytoplasmic proteins that carry a single, polymeric chain of Ub on a specific lysine residue. However, protein modification by Ub has much broader and diverse functions involved in a myriad of cellular processes. Monoubiquitination, at one or multiple lysine residues of transmembrane proteins, influences their stability, protein-protein recognition, activity and intracellular localization. In these processes, Ub functions as an internalization signal that sends the modified substrate to the endocytic/sorting compartments, followed by recycling to the plasma membrane or degradation in the lysosome. E3 ligases play a pivotal role in ubiquitination, because they recognize the acceptor protein and hence dictate the high specificity of the reaction. The multitude of E3s present in nature suggests their nonredundant mode of action and the need for their controlled regulation. Here we give a short account of E3 ligases that specifically modify and regulate membrane proteins. We emphasize the intricate network of interacting proteins that contribute to the substrate-E3 recognition and determine the substrate's cellular fate.  相似文献   

9.
The N‐end rule denotes the relationship between the identity of the amino‐terminal residue of a protein and its in vivo half‐life. Since its discovery in 1986, the N‐end rule has generally been described by a defined set of rules for determining whether an amino‐terminal residue is stabilizing or not. However, recent studies are revealing that this N‐end rule (or N‐degron concept) is less straightforward than previously appreciated. For instance, it is unveiled that N‐terminal acetylation of N‐terminal residues may create a degradation signal (Ac‐degron) that promotes the degradation of target proteins. A recent high‐throughput dissection of degrons in yeast proteins amino termini intriguingly suggested that the hydrophobicity of amino‐terminal residues—but not the N‐terminal acetylation status—may be the indispensable feature of amino‐terminal degrons. Herein, these recent advances in N‐terminal acetylation and the complexity of N‐terminal degradation signals in the context of the N‐degron pathway are analyzed.  相似文献   

10.
The attachment of ubiquitin (Ub) to lysines on substrates or itself by ubiquitin-conjugating (E2) and ubiquitin ligase (E3) enzymes results in protein ubiquitination. Lysine selection is important for generating diverse substrate-Ub structures and targeting proteins to different fates; however, the mechanisms of lysine selection are not clearly understood. The positioning of lysine(s) toward the E2/E3 active site and residues proximal to lysines are critical in their selection. We investigated determinants of lysine specificity of the ubiquitin-conjugating enzyme Cdc34, toward substrate and Ub lysines. Evaluation of the relative importance of different residues positioned −2, −1, +1 and +2 toward ubiquitination of its substrate, Sic1, on lysine 50 showed that charged residues in the −1 and −2 positions negatively impact on ubiquitination. Modeling suggests that charged residues at these positions alter the native salt-bridge interactions in Ub and Cdc34, resulting in misplacement of Sic1 lysine 50 in the Cdc34 catalytic cleft. During polyubiquitination, Cdc34 showed a strong preference for Ub lysine 48 (K48), with lower activity towards lysine 11 (K11) and lysine 63 (K63). Mutating the −2, −1, +1 and +2 sites surrounding K11 and K63 to mimic those surrounding K48 did not improve their ubiquitination, indicating that further determinants are important for Ub K48 specificity. Modeling the ternary structure of acceptor Ub with the Cdc34~Ub complex as well as in vitro ubiquitination assays unveiled the importance of K6 and Q62 of acceptor Ub for Ub K48 polyubiquitination. These findings provide molecular and structural insight into substrate lysine and Ub K48 specificity by Cdc34.  相似文献   

11.
Ubiquitin (Ub) is a small protein (8 kDa) found in all eukaryotic cells, which is conjugated covalently to numerous proteins, tagging them for recognition by a downstream effector. One of the best characterized functions of Ub is targeting proteins for either selective degradation by the proteasome, or for bulk degradation by the autophagy-lysosome system. The executing arm of the UPS is the 26S proteasome, a large multicatalytic complex. While much is known about the synthesis and assembly of the proteasome's subunits, the mechanism(s) underlying its removal has remained obscure, similar to that of many other components of the ubiquitin-proteasome system. Our recent study identified autophagy as the degrading mechanism for the mammalian proteasome, mostly under stress conditions. Amino acid starvation induces specific ubiquitination of certain 19S proteasomal subunits that is essential for its binding to SQSTM1/p62, the protein that shuttles the ubiquitinated proteasome to the autophagic machinery. SQSTM1 delivers ubiquitinated substrates for proteasomal degradation via interaction of its PB1 domain with the 19S proteasomal subunit PSMD4/Rpn10, in situations where the proteasome serves as a “predator." In contrast, we found that the UBA domain of SQSTM1 is essential for its interaction with the ubiquitinated proteasome and its delivery to the autophagosome, rendering the proteasome a “prey.”  相似文献   

12.
Many studies have demonstrated a role for ubiquitin (Ub) in the down-regulation of cell surface proteins. In yeast, down-regulation is marked by the internalization of proteins, followed by their delivery to the lumen of the vacuole where both the cytosolic and lumenal domains are degraded. It is generally believed that the regulatory step of this process is internalization from the plasma membrane and that protein delivery to the lysosome or vacuole is by default. By separating the process of internalization from degradation, we demonstrate that incorporation of proteins into intralumenal vesicles represents a distinct sorting step along the endocytic pathway that is controlled by recognition of ubiquitin. We show that attachment of a single ubiquitin can serve as a specific sorting signal for the degradative pathway by redirecting recycling Golgi proteins and resident vacuolar proteins into intralumenal vesicles of the yeast vacuole. This pathway is independent of PtdIns(3,5) P2 and does not rely on the specific composition of transmembrane domain segments. These data provide a physiological basis for how ubiquitination of cell surface proteins guides their degradation and removal from the recycling pathway.  相似文献   

13.
14.
WWP2 is a HECT E3 ligase that targets protein Lys residues for ubiquitination and is comprised of an N-terminal C2 domain, four central WW domains, and a C-terminal catalytic HECT domain. The peptide segment between the middle WW domains, the 2,3-linker, is known to autoinhibit the catalytic domain, and this autoinhibition can be relieved by phosphorylation at Tyr369. Several protein substrates of WWP2 have been identified, including the tumor suppressor lipid phosphatase PTEN, but the full substrate landscape and biological functions of WWP2 remain to be elucidated. Here, we used protein microarray technology and the activated enzyme phosphomimetic mutant WWP2Y369E to identify potential WWP2 substrates. We identified 31 substrate hits for WWP2Y369E using protein microarrays, of which three were known autophagy receptors (NDP52, OPTN, and SQSTM1). These three hits were validated with in vitro and cell-based transfection assays and the Lys ubiquitination sites on these proteins were mapped by mass spectrometry. Among the mapped ubiquitin sites on these autophagy receptors, many had been previously identified in the endogenous proteins. Finally, we observed that WWP2 KO SH-SH5Y neuroblastoma cells using CRISPR-Cas9 showed a defect in mitophagy, which could be rescued by WWP2Y369E transfection. These studies suggest that WWP2-mediated ubiquitination of the autophagy receptors NDP52, OPTN, and SQSTM1 may positively contribute to the regulation of autophagy  相似文献   

15.
Protein ubiquitination requires the concerted action of three enzymes: ubiquitin‐activating enzyme (E1), ubiquitin‐conjugating enzyme (E2) and ubiquitin ligase (E3). These ubiquitination enzymes belong to an abundant protein family that is encoded in all eukaryotic genomes. Describing their biochemical characteristics is an important part of their functional analysis. It has been recognized that various E2/E3 specificities exist, and that detection of E3 ubiquitination activity in vitro may depend on the recruitment of E2s. Here, we describe the development of an in vitro ubiquitination system based on proteins encoded by genes from Arabidopsis. It includes most varieties of Arabidopsis E2 proteins, which are tested with several RING‐finger type E3 ligases. This system permits determination of E3 activity in combination with most of the E2 sub‐groups that have been identified in the Arabidopsis genome. At the same time, E2/E3 specificities have also been explored. The components used in this system are all from plants, particularly Arabidopsis, making it very suitable for ubiquitination assays of plant proteins. Some E2 proteins that are not easily expressed in Escherichia coli were transiently expressed and purified from plants before use in ubiquitination assays. This system is also adaptable to proteins of species other than plants. In this system, we also analyzed two mutated forms of ubiquitin, K48R and K63R, to detect various types of ubiquitin conjugation.  相似文献   

16.
The ubiquitin-proteasome system is responsible for the degradation of numerous proteins in eukaryotes. Degradation is an essential process in many cellular pathways and involves the proteasome degrading a wide variety of unrelated substrates while retaining specificity in terms of its targets for destruction and avoiding unneeded proteolysis. How the proteasome achieves this task is the subject of intensive research. Many proteins are targeted for degradation by being covalently attached to a poly-ubiquitin chain. Several studies have indicated the importance of a disordered region for efficient degradation. Here, we analyze a data set of 482 in vivo ubiquitinated substrates and a subset in which ubiquitination is known to mediate degradation. We show that, in contrast to phosphorylation sites and other regulatory regions, ubiquitination sites do not tend to be located in disordered regions and that a large number of substrates are modified at structured regions. In degradation-mediated ubiquitination, there is a significant bias of ubiquitination sites to be in disordered regions; however, a significant number is still found in ordered regions. Moreover, in many cases, disordered regions are absent from ubiquitinated substrates or are located far away from the modified region. These surprising findings raise the question of how these proteins are successfully unfolded and ultimately degraded by the proteasome. They indicate that the folded domain must be perturbed by some additional factor, such as the p97 complex, or that ubiquitination may induce unfolding.  相似文献   

17.
泛素化是存在于真核生物中一种重要的翻译后修饰过程,参与调控包括蛋白质降解在内的多种生命活动。实现这一调控过程需要将一个由76个氨基酸组成的泛素蛋白共价连接到底物蛋白上。同时,泛素本身也存在多种翻译后修饰,包括泛素化、磷酸化、乙酰化等,进一步丰富了泛素的修饰类型,决定了底物蛋白不同的命运。近年来,伴随着第65位丝氨酸磷酸化泛素蛋白参与调控线粒体自噬这一突破性进展,泛素蛋白其余磷酸化位点的功能研究也获得越来越多的关注。本文根据目前已有的国内外研究和报道,总结了泛素蛋白已知的磷酸化修饰位点,梳理了泛素蛋白第12位和66位苏氨酸、第57位和65位丝氨酸等位点的磷酸化修饰对其生物物理特性带来的改变,并对相应修饰位点所涉及的生物学功能调控进行了综述。  相似文献   

18.
Ubiquitination involves the attachment of ubiquitin (Ub) to lysine residues on substrate proteins or itself, which can result in protein monoubiquitination or polyubiquitination. Polyubiquitination through different lysines (seven) or the N-terminus of Ub can generate different protein-Ub structures. These include monoubiquitinated proteins, polyubiqutinated proteins with homotypic chains through a particular lysine on Ub or mixed polyubiquitin chains generated by polymerization through different Ub lysines. The ability of the ubiquitination pathway to generate different protein-Ub structures provides versatility of this pathway to target proteins to different fates. Protein ubiquitination is catalyzed by Ub-conjugating and Ub-ligase enzymes, with different combinations of these enzymes specifying the type of Ub modification on protein substrates. How Ub-conjugating and Ub-ligase enzymes generate this structural diversity is not clearly understood. In the current review, we discuss mechanisms utilized by the Ub-conjugating and Ub-ligase enzymes to generate structural diversity during protein ubiquitination, with a focus on recent mechanistic insights into protein monoubiquitination and polyubiquitination.  相似文献   

19.
Aberrantly or excessively expressed proteins in the endoplasmic reticulum are identified by quality control mechanisms and dislocated to the cytosol for proteasome-mediated, ubiquitin-dependent degradation by a process termed endoplasmic reticulum-associated degradation (ERAD). In addition to its role in degradation, ubiquitination has also been implicated in substrate dislocation, although whether direct ubiquitin conjugation of ERAD substrates is required for dislocation has been difficult to ascertain. An obstacle in probing the mechanism of quality control-induced ERAD is the paucity of ERAD substrates being dislocated and detected at any given time. To obviate this problem, we report here the use of a sensitive biotinylation system to probe the dislocation of major histocompatibility complex I (MHCI) heavy chain substrates in the absence of immune evasion proteins. Using this assay system the dislocation of MHCI heavy chains was found not to require potential ubiquitin conjugation sites in the cytoplasmic tail or Lys residues in the ectodomain. By contrast, dislocation of MHCI heavy chains did require deubiquitinating enzyme activity and rapid proteasome-mediated degradation required Lys residues in MHCI heavy chain ectodomain. These combined findings support the model that the endoplasmic reticulum quality control-induced dislocation of MHCI heavy chains may not require direct ubiquitination/deubiquitination as is required for proteasome-mediated degradation post dislocation.  相似文献   

20.
Oxidative stress in mammalian cells is an inevitable consequence of their aerobic metabolism. Oxidants produce modifications to proteins leading to loss of function (or gain of undesirable function) and very often to an enhanced degradation of the oxidized proteins. For several years it has been known that the proteasome is involved in the degradation of oxidized proteins. This review summarizes our knowledge about the recognition of oxidized protein substrates by the proteasome in in vitro systems and its applicability to living cells. The majority of studies in the field agree that the degradation of mildly oxidized proteins is an important function of the proteasomal system. The major recognition motif of the substrates seems to be hydrophobic surface patches that are recognized by the 20S 'core' proteasome. Such hydrophobic surface patches are formed by partial unfolding and exposure of hydrophobic amino acid residues during oxidation. Oxidized proteins appear to be relatively poor substrates for ubiquitination, and the ubiquitination system does not seem to be involved in the recognition or targeting of oxidized proteins. Heavily oxidized proteins appear to first aggregate (new hydrophobic and ionic bonds) and then to form covalent cross-links that make them highly resistant to proteolysis. The inability to degrade extensively oxidized proteins may contribute to the accumulation of protein aggregates during diseases and the aging process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号