首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The continuous production of 1,3-propanediol (1,3-PDO) was investigated with Clostridium beijerinckii NRRL B-593 using raw glycerol without purification obtained from a biodiesel production process. Ceramic rings and pumice stones were used for cell immobilization in a packed-bed bioreactor. For comparison purpose, a control bioreactor with suspended culture was also run. The effect of hydraulic retention time (HRT) on the production of 1,3-PDO in both immobilized and suspended bioreactors were also investigated. The study revealed that HRT is an important factor for both immobilized and suspended systems and a HRT of 2 h is the best one in terms of volumetric production rate (g 1,3-PDO/L/h). Furthermore, cell immobilization had also obvious benefits especially for the robustness and the reliability of the production. The results indicated that cell immobilization achieved a 2.5-fold higher productivity in comparison to suspended cell system. Based on our results, continuous production of 1,3-PDO with immobilized cells is an efficient method, and raw glycerol can be utilized without any pretreatment.  相似文献   

2.
Aims: To characterize the kinetics of growth, sugar uptake and xylitol production in batch and fed‐batch cultures for a xylitol assimilation‐deficient strain of Candida tropicalis isolated via chemical mutagenesis. Methods and Results: Chemical mutagenesis using nitrosoguanidine led to the isolation of the xylitol‐assimilation deficient strain C. tropicalis SS2. Shake‐flask fermentations with this mutant showed a sixfold higher xylitol yield than the parent strain in medium containing 25 g l?1 glucose and 25 g l?1 xylose. With 20 g l?1 glycerol, replacing glucose for cell growth, and various concentrations of xylose, the studies indicated that the mutant strain resulted in xylitol yields from xylose close to theoretical. Under fully aerobic conditions, fed‐batch fermentation with repeated addition of glycerol and xylose resulted in 3·3 g l?1 h?1 xylitol volumetric productivity with the final concentration of 220 g l?1 and overall yield of 0·93 g g?1 xylitol. Conclusions: The xylitol assimilation‐deficient mutant isolated in this study showed the potential for high xylitol yield and volumetric productivity under aerobic conditions. In the evaluation of glycerol as an alternative low‐cost nonfermentable carbon source, high biomass and xylitol yields under aerobic conditions were achieved; however, the increase in initial xylose concentrations resulted in a reduction in biomass yield based on glycerol consumption. This may be a consequence of the role of an active transport system in the yeast requiring increasing energy for xylose uptake and possible xylitol secretion, with little or no energy available from xylose metabolism. Significance and Impact of the Study: The study confirms the advantage of using a xylitol assimilation‐deficient yeast under aerobic conditions for xylitol production with glycerol as a primary carbon source. It illustrates the potential of using the xylose stream in a biomass‐based bio‐refinery for the production of xylitol with further cost reductions resulting from using glycerol for yeast growth and energy production.  相似文献   

3.
Long-term continuous ethanol production of up to 80 g.l1 with a volumetric ethanol productivity of 63 g. l?1. h?1 was maintained for more than 72 days using a Vertical Rotating Immobilized Cell Reactor of the bacterium Z. mobilis. Continuous production of higher ethanol concentration was unsuccessful due to an inhibition of cell growth by long exposure to high ethanol concentrations. However, ethanol concentration as high as 120g. l?1 and volumetric ethanol productivity of 13g. l?1. h?1 were achieved in a repeated-batch fermentation system using the same bioreactor. By a simple washing operation at the end of each run, immobilized biomass could be effectively regenerated and used to carry out more than 10 successive fermentation cycles.  相似文献   

4.
Glycerol, the principal byproduct of biodiesel production, can be a valuable carbon source for bioconversion into diverse class of compounds. This article attempts to investigate the mechanistic aspects of ultrasound mediated bioconversion of glycerol to ethanol and 1,3‐propanediol (1,3‐PDO) by immobilized Clostridium pasteurianum cells on silica support. Our approach is of coupling experimental results with simulations of cavitation bubble dynamics and enzyme kinetics. In addition, the statistical analysis (ANOVA) of experimental results was also done. The glycerol uptake by cells was not affected by either immobilization or with ultrasonication. Nonetheless, both immobilization and ultrasonication were found to enhance glycerol consumption. The enhancement effect of ultrasound on glycerol consumption was most marked (175%) at the highest glycerol concentration of 25 g/L (271.7 mM). The highest glycerol consumption (32.4 mM) was seen for 10 g/L (108.7 mM) initial glycerol concentration. The immobilization of cells shifted the metabolic pathway almost completely towards 1,3‐PDO. No formation of ethanol was seen with mechanical shaking, while traces of ethanol were detected with ultrasonication. On the basis of analysis of enzyme kinetics parameters, we attribute these results to increased substrate‐enzyme affinity and decreased substrate inhibition for 1,3‐PDO dehydrogenase in presence of ultrasound that resulted in preferential conversion of glycerol into 1,3‐PDO. Biotechnol. Bioeng. 2013; 110: 1637–1645. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
The effects of dilution rate and substrate feed concentration on continuous glycerol fermentation by Clostridium butyricum VPI 3266, a natural 1,3-propanediol producer, were evaluated in this work. A high and constant 1,3-propanediol yield (around 0.65 mol/mol), close to the theoretical value, was obtained irrespective of substrate feed concentration or dilution rate. Improvement of 1,3-propanediol volumetric productivity was achieved by increasing the dilution rate, at a fixed feed substrate concentration of 30, 60 or 70 g l−1. Higher 1,3-propanediol final concentrations and volumetric productivities were also obtained when glycerol feed concentration was increased from 30 to 60 g l−1, at D=0.05–0.3 h−1, and from 60–70 g l−1, at D=0.05 and 0.1 h−1·30 g l−1 of 1,3-propanediol and the highest reported value of productivity, 10.3 g l−1 h−1, was achieved at D=0.30 h−1 and 60 g l−1 of feed glycerol. A switch to an acetate/butyrate ratio higher than one was observed for 60 g l−1 of feed glycerol and a dilution rate higher than 0.10 h−1; moreover, at D=0.30 h−1 3-hydroxypropionaldehyde accumulation was observed for the first time in the fermentation broth of C. butyricum.  相似文献   

6.
Liu HJ  Zhang DJ  Xu YH  Mu Y  Sun YQ  Xiu ZL 《Biotechnology letters》2007,29(8):1281-1285
1,3-Propanediol (1,3-PD) can be produced from glycerol by Klebsiella pneumoniae under micro-aerobic conditions. Recently, this fed-batch fermentation process has been successfully scaled up to 1 m3. The final 1,3-PD concentration, molar yield and volumetric productivity of 72 g l−1, 57% and 2.1 g l−1 h−1, respectively, are close to those of 75 g l−1, 61%, and 2.2 g l−1 h−1 under anaerobic conditions. This process would be suitable for the production of 1,3-PD on a large scale.  相似文献   

7.
Phosphoserine aminotransferase (SerC) from Escherichia coli (E. coli) MG1655 is engineered to catalyze the deamination of homoserine to 4‐hydroxy‐2‐ketobutyrate, a key reaction in producing 1,3‐propanediol (1,3‐PDO) from glucose in a novel glycerol‐independent metabolic pathway. To this end, a computation‐based rational approach is used to change the substrate specificity of SerC from l ‐phosphoserine to l ‐homoserine. In this approach, molecular dynamics simulations and virtual screening are combined to predict mutation sites. The enzyme activity of the best mutant, SerCR42W/R77W, is successfully improved by 4.2‐fold in comparison to the wild type when l ‐homoserine is used as the substrate, while its activity toward the natural substrate l ‐phosphoserine is completely deactivated. To validate the effects of the mutant on 1,3‐PDO production, the “homoserine to 1,3‐PDO” pathway is constructed in E. coli by coexpression of SerCR42W/R77W with pyruvate decarboxylase and alcohol dehydrogenase. The resulting mutant strain achieves the production of 3.03 g L?1 1,3‐PDO in fed‐batch fermentation, which is 13‐fold higher than the wild‐type strain and represents an important step forward to realize the promise of the glycerol‐independent synthetic pathway for 1,3‐PDO production from glucose.  相似文献   

8.
Production of lactic acid from glucose by immobilized cells of Lactococcus lactis IO-1 was investigated using cells that had been immobilized by either entrapment in beads of alginate or encapsulation in microcapsules of alginate membrane. The fermentation process was optimized in shake flasks using the Taguchi method and then further assessed in a production bioreactor. The bioreactor consisted of a packed bed of immobilized cells and its operation involved recycling of the broth through the bed. Both batch and continuous modes of operation of the reactor were investigated. Microencapsulation proved to be the better method of immobilization. For microencapsulated cells at immobilized cell concentration of 5.3 g l−1, the optimal production medium had the following initial concentrations of nutrients (g l−1): glucose 45, yeast extract 10, beef extract 10, peptone 7.5 and calcium chloride 10 at an initial pH of 6.85. Under these conditions, at 37 °C, the volumetric productivity of lactic acid in shake flasks was 1.8 g l−1 h−1. Use of a packed bed of encapsulated cells with recycle of the broth through the bed, increased the volumetric productivity to 4.5 g l−1 h−1. The packed bed could be used in repeated batch runs to produce lactic acid.  相似文献   

9.
Mu Y  Teng H  Zhang DJ  Wang W  Xiu ZL 《Biotechnology letters》2006,28(21):1755-1759
1,3-Propanediol (1,3-PD) was produced by Klebsiella pneumoniae using crude glycerol obtained from biodiesel production. The 1,3-PD concentration of 51.3 g/l−1 on crude glycerol from alkali-catalyzed methanolysis of soybean oil was comparable to that of 53 g/l−1 on crude glycerol derived from a lipase-catalyzed process. The productivities of 1.7 g l−1 h−1 on crude glycerol were comparable to that of 2 g l−1 h−1 on pure glycerol. It could be concluded that the crude glycerol could be directly converted to 1,3-PD without any prior purification.  相似文献   

10.
Cho YG  Rhee SK  Lee ST 《Biodegradation》2000,11(1):21-28
The effect of the presence of an alternate toxiccompound (phenol) on the p-nitrophenol(PNP)-degrading activity of freely suspended andcalcium alginate immobilized Nocardioides sp.NSP41 was investigated. In the single substrateexperiments, when the concentration of phenol and PNPwas increased to 1400 mg l-1 and 400 mg l-1,respectively, the initial cell concentrations in thefreely suspended cell culture should be higher than1.5 g dry cell weight l-1 for completedegradation. In the simultaneous degradationexperiment, when the initial concentration of phenolwas increased from 100 to 400 mg l-1, thespecific PNP degradation rate at the concentration of200 mg l-1 was decreased from 0.028 to 0.021h-1. A freely suspended cell culture with a highinitial cell concentration resulted in a highvolumetric degradation rate, suggesting the potentialuse of immobilized cells for simultaneous degradation.In the immobilized cell cultures, althoughsimultaneous degradation of PNP and phenol wasmaintained, the specific PNP and phenol degradationrate decreased. However, a high volumetric PNP andphenol degradation rate could be achieved byimmobilization because of the high cell concentration.Furthermore, when the immobilized cells were reused inthe simultaneous degradation of PNP and phenol, theydid not lose their PNP- and phenol-degrading activityfor 12 times in semi-continuous cultures. Takentogether, the use of immobilized Nocardioidessp. NSP41 for the simultaneous degradation of PNP andphenol at high concentrations is quite feasiblebecause of the high volumetric PNP and phenoldegradation rate and the reusability of immobilizedcells.  相似文献   

11.
In fed-batch culture of Klebsiella pneumoniae, 1,3-propanediol production was growth associated, while the by-products, including lactic acid and ethanol, increased sharply as the cells grew slowly. When the fed-batch culture was supplied with a mixture of organic acids including citrate, fumarate and succinate, cell growth and 1,3-propanediol production increased significantly, whereas the by-products, especially lactic acid and ethanol, decreased sharply. High concentrations of PDO and acetate inhibited cell growth and PDO production. To improve the PDO production, repeated fed-batch culture with addition of the organic acid mixture was performed in a 5-l reactor. The fed-batch culture was repeated five times, and the 1,3-propanediol yield and concentration reached above 0.61 mol mol−1 and 66 g l−1, respectively, in 20 h for each cycle. Furthermore, the PDO productivity reached above 3.30 g l−1 h−1 in each cycle, which was much higher than that of the original fed-batch culture.  相似文献   

12.
The microbial production of 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae under micro-aerobic conditions was investigated in this study. The experimental results of batch fermentation showed that the final concentration and yield of 1,3-PD on glycerol under micro-aerobic conditions approached values achieved under anaerobic conditions. However, less ethanol was produced under microaerobic than anaerobic conditions at the end of fermentation. The batch micro-aerobic fermentation time was markedly shorter than that of anaerobic fermentation. This led to an increment of productivity of 1,3-PD. For instance, the concentration, molar yield, and productivity of 1,3-PD of batch micro-aerobic fermentation by K. pneumoniae DSM 2026 were 17.65 g/l, 56.13%, and 2.94 g l–1 h–1, respectively, with a fermentation time of 6 h and an initial glycerol concentration of 40 g/l. Compared with DSM 2026, the microbial growth of K. pneumoniae AS 1.1736 was slow and the concentration of 1,3-PD was low under the same conditions. Furthermore, the microbial growth in fed-batch fermentation by K. pneumoniae DSM 2026 was faster under micro-aerobic than anaerobic conditions. The concentration, molar yield, and productivity of 1,3-PD in fed-batch fermentation under micro-aerobic conditions were 59.50 g/l, 51.75%, and 1.57 g l–1 h–1, respectively. The volumetric productivity of 1,3-PD under microaerobic conditions was almost twice that of anaerobic fed-batch fermentation, at 1.57 and 0.80 g l–1 h–1, respectively.  相似文献   

13.
Klebsiella pneumoniae HR526, a new isolated 1,3‐propanediol (1,3‐PD) producer, exhibited great productivity. However, the accumulation of lactate in the late‐exponential phase remained an obstacle of 1,3‐PD industrial scale production. Hereby, mutants lacking D ‐lactate pathway were constructed by knocking out the ldhA gene encoding fermentative D ‐lactate dehydrogenase (LDH) of HR526. The mutant K. pneumoniae LDH526 with the lowest LDH activity was studied in aerobic fed‐batch fermentation. In experiments using pure glycerol as feedstock, the 1,3‐PD concentrations, conversion, and productivity increased from 95.39 g L?1, 0.48 and 1.98 g L?1 h?1 to 102. 06 g L?1, 0.52 mol mol?1 and 2.13 g L?1 h?1, respectively. The diol (1,3‐PD and 2,3‐butanediol) conversion increased from 0.55 mol mol?1 to a maximum of 0.65 mol mol?1. Lactate would not accumulate until 1,3‐PD exceeded 84 g L?1, and the final lactate concentration decreased dramatically from more than 40 g L?1 to <3 g L?1. Enzymic measurements showed LDH activity decreased by 89–98% during fed‐batch fermentation, and other related enzyme activities were not affected. NADH/NAD+ enhanced more than 50% in the late‐exponential phase as the D ‐lactate pathway was cut off, which might be the main reason for the change of final metabolites concentrations. The ability to utilize crude glycerol from biodiesel process and great genetic stability demonstrated that K. pnemoniae LDH526 was valuable for 1,3‐PD industrial production. Biotechnol. Bioeng. 2009; 104: 965–972. © 2009 Wiley Periodicals, Inc.  相似文献   

14.
Freely suspended and Ca-alginate-immobilized cells of Pimelobacter sp. were used for degradation of pyridine. When the pyridine concentration was up to 2 g l–1, freely suspended cells completely degraded pyridine regardless of the initial cell concentrations used. However, when the pyridine concentration increased to 4 g l–1, the initial cell concentration in freely suspended cell culture should be higher than 1.5 g dry cell weight l–1 for complete degradation of pyridine. In addition, a freely suspended cell culture with a high initial cell concentration resulted in a high volumetric pyridine-degradation rate, suggesting the potential use of immobilized cells for pyridine-degradation. When the immobilized cells were used for pyridine-degradation, neither specific pyridine-degradation rate nor tolerance against pyridine was improved. However, a high volumetric pyridine-degradation rate in the range 0.082–0.129 g l–1 hr–1 could be achieved by the immobilized cells because of the high cell concentration. Furthermore, when the immobilized cells were reused in degrading pyridine at a concentration of 2–4 g l–1 they did not lose their pyridine-degrading activity for 2 weeks. Taken together, the data obtained here showed the feasibility of using immobilized cells for pyridine-degradation.  相似文献   

15.
The induction using substrate mixtures is an operational strategy for improving the productivity of heterologous protein production with Pichia pastoris. Glycerol as a cosubstrate allows for growth at a higher specific growth rate, but also has been reported to be repressor of the expression from the AOX1 promoter. Thus, further insights about the effects of glycerol are required for designing the induction stage with mixed substrates. The production of Rhizopus oryzae lipase (ROL) was used as a model system to investigate the application of methanol‐glycerol feeding mixtures in fast metabolizing methanol phenotype. Cultures were performed in a simple chemostat system and the response surface methodology was used for the evaluation of both dilution rate and methanol‐glycerol feeding composition as experimental factors. Our results indicate that productivity and yield of ROL are strongly affected by dilution rate, with no interaction effect between the involved factors. Productivity showed the highest value around 0.04–0.06 h?1, while ROL yield decreased along the whole dilution rate range evaluated (0.03–0.1 h?1). Compared to production level achieved with methanol‐only feeding, the highest specific productivity was similar in mixed feeding (0.9 UA g‐biomass?1 h?1), but volumetric productivity was 70% higher. Kinetic analysis showed that these results are explained by the effects of dilution rate on specific methanol uptake rate, instead of a repressor effect caused by glycerol feeding. It is concluded that despite the effect of dilution rate on ROL yield, mixed feeding strategy is a proper process option to be applied to P. pastoris Mut+ phenotype for heterologous protein production. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:707–714, 2015  相似文献   

16.
Aims: Analysis of the physiology and metabolism of Escherichia coli arcA and creC mutants expressing a bifunctional alcohol‐acetaldehyde dehydrogenase from Leuconostoc mesenteroides growing on glycerol under oxygen‐restricted conditions. The effect of an ldhA mutation and different growth medium modifications was also assessed. Methods and Results: Expression of adhE in Ecoli CT1061 [arcA creC(Con)] resulted in a 1·4‐fold enhancement in ethanol synthesis. Significant amounts of lactate were produced during micro‐oxic cultures and strain CT1061LE, in which fermentative lactate dehydrogenase was deleted, produced up to 6·5 ± 0·3 g l?1 ethanol in 48 h. Escherichia coli CT1061LE derivatives resistant to >25 g l?1 ethanol were obtained by metabolic evolution. Pyruvate and acetaldehyde addition significantly increased both biomass and ethanol concentrations, probably by overcoming acetyl‐coenzyme A (CoA) shortage. Yeast extract also promoted growth and ethanol synthesis, and this positive effect was mainly attributable to its vitamin content. Two‐stage bioreactor cultures were conducted in a minimal medium containing 100 μg l?1 calcium d ‐pantothenate to evaluate oxic acetyl‐CoA synthesis followed by a switch into fermentative conditions. Ethanol reached 15·4 ± 0·9 g l?1 with a volumetric productivity of 0·34 ± 0·02 g l?1 h?1. Conclusions: Escherichia coli responded to adhE over‐expression by funnelling carbon and reducing equivalents into a highly reduced metabolite, ethanol. Acetyl‐CoA played a key role in micro‐oxic ethanol synthesis and growth. Significance and Impact of the Study: Insight into the micro‐oxic metabolism of Ecoli growing on glycerol is essential for the development of efficient industrial processes for reduced biochemicals production from this substrate, with special relevance to biofuels synthesis.  相似文献   

17.
Batch and continuous production of high fructose syrup from Jerusalem artichoke tubers has been studied using yeast cells immobilized in open pore gelatin matrix. In a batch reactor, the hydrolysis was 93% (d-fructose/d-glucose = 90/10) and 42 mg d-fructose per ml was produced from the artichoke tuber extract by immobilized cells in 3 h. The same immobilized cells were recycled and used repeatedly for 10 batch cycles starting with fresh juice at the beginning of each cycle. It was found that immobilized cells were extremely stable and the percent hydrolysis was almost constant for all 10 batch cycles. In a continuous reactor using an immobilized cell concentration of 65.7 g (dry wt) l?1 of total working bioreactor volume, the percent hydrolysis was found to remain constant at ~100% at dilution rates <1.26 h?1, but beyond that it decreased. Volumetric productivity attained its maximum value at D = 2.08 h?1 and was found to be 100 g l?1 h?1. This was achieved at a feed sugar conversion of 80%. At 90% conversion and D = 1.66 h?1, the productivity was found to be 90 g l?1 h?1. Continuous operation of the immobilized cell bioreactor at a constant dilution rate of 1.65 h?1 for 240 h resulted in only 2% loss of original activity.  相似文献   

18.
Ko BS  Rhee CH  Kim JH 《Biotechnology letters》2006,28(15):1159-1162
The effects of glycerol and the oxygen transfer rate on the xylitol production rate by a xylitol dehydrogenase gene (XYL2)-disrupted mutant of Candida tropicalis were investigated. The mutant produced xylitol near the almost yield of 100% from d-xylose using glycerol as a co-substrate for cell growth and NADPH regeneration: 50 g d-xylose l−1 was completely converted into xylitol when at least 20 g glycerol l−1 was used as a co-substrate. The xylitol production rate increased with the O2 transfer rate until saturation and it was not necessary to control the dissolved O2 tension precisely. Under the optimum conditions, the volumetric productivity and xylitol yield were 3.2 g l−1 h−1 and 97% (w/w), respectively.  相似文献   

19.
Aims: To evaluate the effect of and exponential feeding regime on the production of epoxide hydrolase (EH) enzyme in recombinant Yarrowia lipolytica in comparison to a constant feed strategy. Methods and Results: An exponential feed model was developed and fermentations were fed at six different exponential rates. A twofold increase in EH productivity and a 15% increase in volumetric EH activity was obtained by applying exponential glucose feed rates in fed‐batch cultivation. These responses were modelled to obtain a theoretical optimum feed rate that was validated in duplicate fermentations. The model optimum of 0·06 h?1 resulted in a volumetric EH activity of c. 5500 U l?1 h?1 and a maximum activity of 206 000 U l?1. This correlated well with model predictions, with a variance of <10%. Conclusions: The use of an exponential feed strategy at a rate of 0·06 h ? 1 yielded best results for all key responses which show a clear improvement over a constant feed strategy. Significance and Impact of the Study: The study was the first evaluation of an exponential feed strategy on recombinant Y. lipolytica for the production of EH enzyme. The results suggest a strategy for the commercial production of a valuable pharmaceutical enzyme.  相似文献   

20.
A rotating packed drum reactor has been proposed as an immobilized whole cell reactor and its performance for ethanol production has been studied with yeast cells immobilized in calcium alginate gel. In a continuous operation with synthetic d-glucose medium containing 125 g d-glucose l?1, ethanol productivity was 20 g l?1 h?1 at a space velocity of 0.38 l (l gel)?1 h?1. With intermittent aeration the viability of yeast cells after 270 h of operation remained above 65%. CO2 removal was easy, but d-glucose conversion was low at a high space velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号