首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autophagy (which includes macro-, micro-, and chaperone-mediated autophagy) is an important biological mechanism for degradation of damaged/obsolete macromolecules and organelles. Ageing non-dividing cells, however, progressively accumulate oxidised proteins, defective organelles and intralysosomal lipofuscin inclusions, suggesting inherent insufficiency of autophagy. To learn more about the role of macroautophagy in the turnover of organelles and lipofuscin formation, we inhibited autophagic sequestration with 3-methyladenine (3 MA) in growth-arrested human fibroblasts, a classical model of cellular ageing. Such treatment resulted in a dramatic accumulation of altered lysosomes, displaying lipofuscin-like autofluorescence, as well as in a moderate increase of mitochondria with lowered membrane potential. The size of the late endosomal compartment appeared not to be significantly altered following 3 MA exposure. The accumulation of lipofuscin-like material was enhanced when 3 MA administration was combined with hyperoxia. The findings suggest that macroautophagy is essential for normal turnover of lysosomes. This notion is supported by reports in the literature of lysosomal membrane proteins inside lysosomes and/or late endosomes, as well as lysosomes with active hydrolases within autophagosomes following vinblastine-induced block of fusion between lysosomes and autophagosomes. The data also suggest that specific components of lysosomes, such as membranes and proteins, may be direct sources of lipofuscin.  相似文献   

2.
The internalization of surface-bound diphtheria toxin (DT) in BS-C-1 cells correlated with its appearance in intracellular endosomal vesicles; essentially no toxin appeared within secondary lysosomal vesicles. In contrast, internalized epidermal growth factor (EGF) was localized within both endosomal and lysosomal vesicles. Upon preincubation of cells with leupeptin, a lysosomal protease inhibitor, a threefold increase in the accumulation of EGF into lysosomes was observed. Under identical conditions, essentially all of the diphtheria toxin remained within endosomes (less than 2% of the intracellular diphtheria toxin accumulated in the lysosomal fraction), indicating that the inability to detect diphtheria toxin in lysosomes was not due to its rapid turnover within this vesicle. Following internalization of EGF or DT, up to 40% of the ligand appeared in the medium as TCA-soluble radioactivity. EGF degradation was partially leupeptin-sensitive and markedly NH4Cl-sensitive, indicating lysosomal degradation. In contrast, DT A-fragment degradation was resistant to these inhibitors, while B-fragment showed only partial sensitivity. These data suggest that the bulk of endocytosed diphtheria toxin is localized within endosomes and degraded by a pathway essentially independent of lysosomes.  相似文献   

3.
Lysosomes are thought to be the major intracellular compartment for the degradation of macromolecules. We recently identified a novel type of autophagy, RNautophagy, where RNA is directly taken up by lysosomes in an ATP-dependent manner and degraded. However, the mechanism of RNA translocation across the lysosomal membrane and the physiological role of RNautophagy remain unclear. In the present study, we performed gain- and loss-of-function studies with isolated lysosomes, and found that SIDT2 (SID1 transmembrane family, member 2), an ortholog of the Caenorhabditis elegans putative RNA transporter SID-1 (systemic RNA interference deficient-1), mediates RNA translocation during RNautophagy. We also observed that SIDT2 is a transmembrane protein, which predominantly localizes to lysosomes. Strikingly, knockdown of Sidt2 inhibited up to ?50% of total RNA degradation at the cellular level, independently of macroautophagy. Moreover, we showed that this impairment is mainly due to inhibition of lysosomal RNA degradation, strongly suggesting that RNautophagy plays a significant role in constitutive cellular RNA degradation. Our results provide a novel insight into the mechanisms of RNA metabolism, intracellular RNA transport, and atypical types of autophagy.  相似文献   

4.
Schmid D  Münz C 《Autophagy》2007,3(2):133-135
The adaptive immune system is orchestrated by CD4+ T cells. These cells detect peptides presented on Major Histocompatibility Complex (MHC) class II molecules, which are loaded in late endosomes with products of lysosomal proteolysis. One pathway by which proteins gain access to degradation in lysosomes is macroautophagy. We recently showed that constitutive macroautophagy can be detected in cells relevant for the immune system, including dendritic cells. In these antigen presenting cells, autophagosomes frequently fused with MHC class II antigen loading compartments and targeting of Influenza matrix protein 1 (MP1) for macroautophagy enhanced MHC class II presentation to MP1-specific CD4+ T cell clones up to 20 fold. Our findings indicate that macroautophagy is a constitutive and efficient pathway of antigen delivery for MHC class II presentation. We suggest that this pathway samples intracellular proteins for immune surveillance and induction of tolerance in CD4+ T cells, and could be targeted for improved MHC class II presentation of vaccine antigens.  相似文献   

5.
We have analyzed the subcellular localization of 125I-labeled ribonuclease A and ribonuclease S-protein (residues 21-124) after erythrocyte-mediated microinjection into confluent cultures of IMR-90 human lung fibroblasts. Microinjected cells were fractionated by two consecutive Percoll gradients, and the distribution of radioactive ribonuclease A and S-protein was compared to patterns for known enzyme markers. Ribonuclease A is localized in the cytosol immediately after microinjection, but thereafter a portion of the microinjected enzyme is associated with lysosomes. We obtained similar results for ribonuclease S-protein except extensive association with a nonlysosomal intracellular structure is also evident. The effects of ammonium chloride on proteolysis indicate that ribonuclease A and ribonuclease S-protein are degraded at least in part by lysosomal pathways. Degradation of long-lived cellular proteins is inhibited by 17% in the presence of serum and by 35% in the absence of serum. The effects of ammonium chloride on catabolism of microinjected proteins are more variable. Inhibition in the presence and absence of serum ranged between 43 and 64% for both ribonuclease A and ribonuclease S-protein. To quantitatively assess the role of lysosomal and cytosolic pathways in the degradation of microinjected proteins, we have tagged proteins with the inert trisaccharide, [3H] raffinose. The radioactive degradation products of such proteins are completely retained within lysosomes since the lysosomal membrane is impermeable to [3H] raffinose coupled to lysine or small peptides. These studies show that ribonuclease A and S-protein are degraded almost entirely by lysosomes while bovine serum albumin is degraded principally in the cytosol. A mixture of rat liver cytosolic proteins is degraded approximately 60% in the cytosol and 40% by lysosomes confirming that both lysosomal and nonlysosomal pathways of proteolysis are important in confluent human fibroblasts.  相似文献   

6.
There are multiple pathways of intracellular protein degradation, and molecular determinants within proteins appear to target them for particular pathways of breakdown. We use red cell-mediated microinjection to introduce radiolabeled proteins into cultured human fibroblasts in order to follow their catabolism. A well-characterized protein, bovine pancreatic ribonuclease A (RNase A), is localized initially in the cytosol of cells after microinjection, but it is subsequently taken up and degraded by lysosomes. This lysosomal pathway of proteolysis is subject to regulation in that RNase A is taken up and degraded by lysosomes at twice the rate when serum is omitted from the culture medium. Subtilisin cleaves RNase A between residues 20 and 21, and the separated fragments are termed RNase S-peptide (residues 1–20) and RNase S-protein (residues 21–124). Microinjected RNase S-protein is degraded in a serum-independent manner, while RNase S-peptide microinjected alone shows a twofold increase in degradation in response to serum withdrawal. Furthermore, covalent linkage of S-peptide to other proteins prior to microinjection causes degradation of the conjugate to become serum responsive. These results show that recognition of RNase A and certain other proteins for enhanced lysosomal degradation during serum withdrawal is based on some feature of the amino-terminal 20 amino acids. The entire S-peptide is not required for enhanced lysosomal degradation during serum withdrawal because degradation of certain fragments is also responsive to serum. We have identified the essential region to be within residues 7–11 of RNase S-peptide (Lys-Phe-Glu-Arg-Gln; KFERQ). To determine whether related peptides exist in cellular proteins, we raised antibodies to the pentapeptide. Affinity-purified antibodies to KFERQ specifically precipitate 25–35% of cellular proteins, and these proteins are preferentially degraded in response to serum withdrawal. Computer analyses of known protein sequences indicate that proteins degraded by lysosomes at an enhanced rate in response to serum withdrawal contain peptide regions related, but not identical, to KFERQ. We suggest two possible peptide motifs related to KFERQ and speculate about possible mechanisms of selective delivery of proteins to lysosomes based on such peptide regions.  相似文献   

7.
《Autophagy》2013,9(7):917-919
The neuronal protein alpha-synuclein is thought to be central in the pathogenesis of Parkinson’s Disease (PD). Excessive wild type alpha-synuclein levels can lead to PD in select familial cases and alpha-synuclein protein accumulation occurs in sporadic PD. Therefore, elucidation of the mechanisms that control alpha-synuclein levels is critical for PD pathogenesis and potential therapeutics. The subject of alpha-synuclein degradation has been controversial. Previous work show that, in an assay with isolated liver lysosomes, purified wild type alpha-synuclein is degraded by the process of Chaperone Mediated Autophagy (CMA). Whether this actually occurs in a cellular context has been unclear. In our most recent work, we find that wild type alpha-synuclein, but not the closely related protein beta-synuclein, is indeed degraded by CMA in neuronal cells, including primary postnatal ventral midbrain neurons. Macroautophagy, but not the proteasome, also contributes to alpha-synuclein degradation. Therefore, two separate lysosomal pathways, CMA and macroautophagy, degrade wild type alpha-synuclein in neuronal cells. It is hypothesized that impairment of either of these two pathways, or of more general lysosomal function, may be an initiating factor in alpha-synuclein accumulation and sporadic PD pathogenesis.

Addendum to: Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L. Wild type α-synuclein is degraded by chaperone mediated autophagy and macroautophagy in neuronal cells. J Biol Chem 2008; In press.  相似文献   

8.
Dialysis related amyloidosis is a serious complication of long-term hemodialysis in which beta(2)-microglobulin (beta(2)m) forms amyloid fibrils that deposit predominantly in cartilaginous tissues. How these fibrils form in vivo, however, is poorly understood. Here we perform a systematic investigation into the role of macrophages in the formation and degradation of beta(2)m amyloid fibrils, building on observations that macrophages are found in association with beta(2)m amyloid deposits in vivo and that these cells contain intra-lysosomal beta(2)m amyloid. In live cell imaging experiments we demonstrate that macrophages internalize monomeric beta(2)m, whereupon it is sorted to lysosomes. At lysosomal pH beta(2)m self-associates in vitro to form amyloid-like fibrils with an array of morphologies as visualized by atomic force microscopy. Cleavage of the monomeric protein by both macrophages and lysosomal proteases isolated from these cells results in the rapid degradation of the monomeric protein, preventing amyloid formation. Incubation of macrophages with preformed fibrils revealed that macrophages internalize amyloid-like fibrils formed extracellularly, but in marked contrast with the monomeric protein, the fibrils were not degraded within macrophage lysosomes. Correspondingly beta(2)m fibrils were highly resistant to degradation by high concentrations of lysosomal proteases isolated from macrophages. Despite their enormous degradative capacity, therefore, macrophage lysosomes cannot ameliorate dialysis-related amyloidosis by degrading pre-existing amyloid fibrils, but lysosomal proteases may play a protective role by eliminating amyloid precursors before beta(2)m fibrils can accumulate in what may represent an otherwise fibrillogenic environment.  相似文献   

9.
The most striking morphologic change in neurons during normal aging is the accumulation of autophagic vacuoles filled with lipofuscin or neuromelanin pigments. These organelles are similar to those containing the ceroid pigments associated with neurologic disorders, particularly in diseases caused by lysosomal dysfunction. The pigments arise from incompletely degraded proteins and lipids principally derived from the breakdown of mitochondria or products of oxidized catecholamines. Pigmented autophagic vacuoles may eventually occupy a major portion of the neuronal cell body volume because of resistance of the pigments to lysosomal degradation and/or inadequate fusion of the vacuoles with lysosomes. Although the formation of autophagic vacuoles via macroautophagy protects the neuron from cellular stress, accumulation of pigmented autophagic vacuoles may eventually interfere with normal degradative pathways and endocytic/secretory tasks such as appropriate response to growth factors.  相似文献   

10.
The sorting of signaling receptors within the endocytic system is important for appropriate cellular responses. After activation, receptors are trafficked to early endosomes and either recycled or sorted to lysosomes and degraded. Most receptors trafficked to lysosomes are modified with ubiquitin and recruited into an endosomal subdomain enriched in hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), a ubiquitin-binding component of the endosomal-sorting complex required for transport (ESCRT) machinery, and then sorted into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs)/lysosomes. However, not all receptors use ubiquitin or the canonical ESCRT machinery to sort to MVBs/lysosomes. This is exemplified by protease-activated receptor-1 (PAR1), a G protein-coupled receptor for thrombin, which sorts to lysosomes independent of ubiquitination and HRS. We recently showed that the adaptor protein ALIX binds to PAR1, recruits ESCRT-III, and mediates receptor sorting to ILVs of MVBs. However, the mechanism that initiates PAR1 sorting at the early endosome is not known. We now report that the adaptor protein complex-3 (AP-3) regulates PAR1 ubiquitin-independent sorting to MVBs through an ALIX-dependent pathway. AP-3 binds to a PAR1 cytoplasmic tail-localized tyrosine-based motif and mediates PAR1 lysosomal degradation independent of ubiquitination. Moreover, AP-3 facilitates PAR1 interaction with ALIX, suggesting that AP-3 functions before PAR1 engagement of ALIX and MVB/lysosomal sorting.  相似文献   

11.
We report that degradation of proteins microinjected into human fibroblasts is accompanied by release into the culture medium of peptide fragments and intact proteins as well as single amino acids. For the nine proteins and polypeptides microinjected, acid-precipitable radioactivity, i.e. peptide fragments and/or intact proteins, ranged from 10 to 67% of the total released radioactivity. Peptide fragments and/or intact protein accounted for 60% of the radioactivity released into the medium by cells microinjected with ribonuclease A. Two major radiolabeled peptide fragments were found, and one was of an appropriate size to function as an antigen in antigen-presenting cells. The peptides released from microinjected ribonuclease A were derived from lysosomal pathways of proteolysis based on several lines of evidence. Previous studies have shown that microinjected ribonuclease A is degraded to single amino acids entirely within lysosomes (McElligott, M. A., Miao, P., and Dice, J. F. (1985) J. Biol. Chem. 260, 11986-11993). We show that release of free amino acids and peptide fragments and/or intact protein was equivalently stimulated by serum deprivation and equivalently inhibited by NH4Cl. We also show that lysosomal degradation of endocytosed [3H]ribonuclease A was accompanied by the release of two peptide fragments similar in size and charge to those from microinjected [3H]ribonuclease A. These findings demonstrate that degradation within lysosomes occurs in a manner that spares specific peptides; they also suggest a previously unsuspected pathway by which cells can secrete cytosol-derived polypeptides.  相似文献   

12.
Caveolin-1 is an integral membrane protein of plasma membrane caveolae. Here we report that caveolin-1 collects at the cytosolic surface of lysosomal membranes when cells are serum starved. This is due to an elevation of the intralysosomal pH, since ionophores and proton pump inhibitors that dissipate the lysosomal pH gradient also trapped caveolin-1 on late endosome/lysosomes. Accumulation is both saturable and reversible. At least a portion of the caveolin-1 goes to the plasma membrane upon reversal. Several studies suggest that caveolin-1 is involved in cholesterol transport within the cell. Strikingly, we find that blocking cholesterol export from lysosomes with progesterone or U18666A or treating cells with low concentrations of cyclodextrin also caused caveolin-1 to accumulate on late endosome/lysosomal membranes. Under these conditions, however, live-cell imaging shows cavicles actively docking with lysosomes, suggesting that these structures might be involved in delivering caveolin-1. Targeting of caveolin-1 to late endosome/lysosomes is not observed normally, and the degradation rate of caveolin-1 is not altered by any of these conditions, indicating that caveolin-1 accumulation is not a consequence of blocked degradation. We conclude that caveolin-1 normally traffics to and from the cytoplasmic surface of lysosomes during intracellular cholesterol trafficking.  相似文献   

13.
Mechanisms for cooperation between the cytosolic Hsp70 system and the ubiquitin proteasome system during protein triage are not clear. Herein, we identify new mechanisms for selection of misfolded cytosolic proteins for degradation via defining functional interactions between specific cytosolic Hsp70/Hsp40 pairs and quality control ubiquitin ligases. These studies revolved around the use of S. cerevisiae to elucidate the degradation pathway of a terminally misfolded reporter protein, short-lived GFP (slGFP). The Type I Hsp40 Ydj1 acts with Hsp70 to suppress slGFP aggregation. In contrast, the Type II Hsp40 Sis1 is required for proteasomal degradation of slGFP. Sis1 and Hsp70 operate sequentially with the quality control E3 ubiquitin ligase Ubr1 to target slGFP for degradation. Compromise of Sis1 or Ubr1 function leads slGFP to accumulate in a Triton X-100-soluble state with slGFP degradation intermediates being concentrated into perinuclear and peripheral puncta. Interestingly, when Sis1 activity is low the slGFP that is concentrated into puncta can be liberated from puncta and subsequently degraded. Conversely, in the absence of Ubr1, slGFP and the puncta that contain slGFP are relatively stable. Ubr1 mediates proteasomal degradation of slGFP that is released from cytosolic protein handling centers. Pathways for proteasomal degradation of misfolded cytosolic proteins involve functional interplay between Type II Hsp40/Hsp70 chaperone pairs, PQC E3 ligases, and storage depots for misfolded proteins.  相似文献   

14.
15.
Mucopolysaccharidoses (MPS) are a group of genetic disorders belonging to lysosomal storage diseases. They are caused by genetic defects leading to a lack or severe deficiency of activity of one of lysosomal hydrolases involved in degradation of glycosaminoglycans (GAGs). Partially degraded GAGs accumulate in lysosomes, which results in dysfunctions of cells, tissues, and organs. Until recently, it was assumed that GAG accumulation in cells is the major, if not the only, mechanism of pathogenesis in MPS, as GAGs may be a physical ballast for lysosomes causing inefficiency of cells due to a large amount of a stored material. However, recent reports suggest that in MPS cells there are changes in many different processes, which might be even more important for pathogenesis than lysosomal accumulation of GAGs per se. Moreover, there are many recently published results indicating that lysosomes not only are responsible for degradation of various macromolecules, but also play crucial roles in the regulation of cellular metabolism. Therefore, it appears plausible that previous failures in treatment of MPS (i.e., possibility to correct only some symptoms and slowing down of the disease rather than fully effective management of MPS) might be caused by underestimation of changes in cellular processes and concentration solely on decreasing GAG levels in cells.  相似文献   

16.
The neuronal protein alpha-synuclein is thought to be central in the pathogenesis of Parkinson's disease (PD). Excessive wild type alpha-synuclein levels can lead to PD in select familial cases and alpha-synuclein protein accumulation occurs in sporadic PD. Therefore, elucidation of the mechanisms that control alpha-synuclein levels is critical for PD pathogenesis and potential therapeutics. The subject of alpha-synuclein degradation has been controversial. Previous work shows that, in an assay with isolated liver lysosomes, purified wild type alpha-synuclein is degraded by the process of chaperone-mediated autophagy (CMA). Whether this actually occurs in a cellular context has been unclear. In our most recent work, we find that wild type alpha-synuclein, but not the closely related protein beta-synuclein, is indeed degraded by CMA in neuronal cells, including primary postnatal ventral midbrain neurons. Macroautophagy, but not the proteasome, also contributes to alpha-synuclein degradation. Therefore, two separate lysosomal pathways, CMA and macroautophagy, degrade wild type alpha-synuclein in neuronal cells. It is hypothesized that impairment of either of these two pathways, or of more general lysosomal function, may be an initiating factor in alpha-synuclein accumulation and sporadic PD pathogenesis.  相似文献   

17.
In neurodegenerative diseases caused by extended polyglutamine (polyQ) sequences in proteins, aggregation-prone polyQ proteins accumulate in intraneuronal inclusions. PolyQ proteins can be degraded by lysosomes or proteasomes. Proteasomes are unable to hydrolyze polyQ repeat sequences, and during breakdown of polyQ proteins, they release polyQ repeat fragments for degradation by other cellular enzymes. This study was undertaken to identify the responsible proteases. Lysosomal extracts (unlike cytosolic enzymes) were found to rapidly hydrolyze polyQ sequences in peptides, proteins, or insoluble aggregates. Using specific inhibitors against lysosomal proteases, enzyme-deficient extracts, and pure cathepsins, we identified cathepsins L and Z as the lysosomal cysteine proteases that digest polyQ proteins and peptides. RNAi for cathepsins L and Z in different cell lines and adult mouse muscles confirmed that they are critical in degrading polyQ proteins (expanded huntingtin exon 1) but not other types of aggregation-prone proteins (e.g. mutant SOD1). Therefore, the activities of these two lysosomal cysteine proteases are important in host defense against toxic accumulation of polyQ proteins.  相似文献   

18.
19.
《Autophagy》2013,9(2):133-135
The adaptive immune system is orchestrated by CD4+ T cells. These cells detect peptides presented on Major Histocompatiblity Complex (MHC) class II molecules, which are loaded in late endosomes with products of lysosomal proteolysis. One pathway by which proteins gain access to degradation in lysosomes is macroautophagy. We recently showed that constitutive macroautophagy can be detected in cells relevant for the immune system, including dendritic cells. In these antigen presenting cells, autophagosomes frequently fused with MHC class II antigen loading compartments and targeting of Influenza matrix protein 1 (MP1) for macroautophagy enhanced MHC class II presentation to MP1-specific CD4+ T cell clones up to 20 fold. Our findings indicate that macroautophagy is a constitutive and efficient pathway of antigen delivery for MHC class II presentation. We suggest that this pathway samples intracellular proteins for immune surveillance and induction of tolerance in CD4+ T cells, and could be targeted for improved MHC class II presentation of vaccine antigens.

Addendum to:

MHC Class II Antigen Loading Compartments Continuously Receive Input from Autophagosomes

Dorothee Schmid, Marc Pypaert and Christian Münz

Immunity 2006; In press  相似文献   

20.
Different mechanisms for delivery of intracellular components (proteins and organelles) to lysosomes and late endosomes for degradation co-exist in almost all cells and set the basis for distinct autophagic pathways. Cargo can be sequestered inside double-membrane vesicles (or autophagosomes) and reach the lysosomal compartment upon fusion of these vesicles to lysosomes through macroautophagy. In a different type of autophagy, known as chaperone-mediated autophagy (CMA), single individual soluble proteins can be targeted one by one to the lysosomal membrane and translocated into the lumen for degradation. Direct sequestration of proteins and organelles by invaginations at the lysosomal membrane that pinch off into the lumen has also been proposed. This process, known as microautophagy, remains poorly understood in mammalian cells. In our recent work, we demonstrate the occurrence of both "in bulk" and "selective" internalization of cytosolic components in late endosomes and identify some of the molecular players of this process that we have named endosomalmicroautophagy (e-MI) due to its resemblance to microautophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号