首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
So-called ‘in-depth proteomics’ and its applied separation methodology to improve the proteome coverage depth has become an important issue in mass spectrometric-based proteomics and system-wide cell biology studies. Employing a bottom-up approach and a variety of separation techniques, it allows for identification of proteins with low copy numbers and enables researchers to correlate the number of expressed genes in a cell with the proteome. Here we describe recent advances in this field with emphasis on peptide and protein separation technologies. The discussion is focused both on single injection analyses employing long reversed phase liquid chromatography separations of peptides (‘single shot proteomics’) and on the combination of orthogonal protein and peptide separation methods to achieve maximum protein coverage. Owing to these improvements, in-depth proteomics has now fully entered the field and is being implemented in an increasing number of laboratories.  相似文献   

2.
Liquid chromatography MALDI MS/MS for membrane proteome analysis   总被引:3,自引:0,他引:3  
Membrane proteins play critical roles in many biological functions and are often the molecular targets for drug discovery. However, their analysis presents a special challenge largely due to their highly hydrophobic nature. We present a surfactant-aided shotgun proteomics approach for membrane proteome analysis. In this approach, membrane proteins were solubilized and digested in the presence of SDS followed by newly developed auto-offline liquid chromatography/matrix-assisted laser desorption ionization (LC/MALDI) tandem MS analysis. Because of high tolerance of MALDI to SDS, one-dimensional (1D) LC separation can be combined with MALDI for direct analysis of protein digests containing SDS, without the need for extensive sample cleanup. In addition, the heated droplet interface used in LC/MALDI can work with high flow LC separations, allowing a relatively large amount of protein digest to be used for 1D LC/MALDI which facilitates the detection of low abundance proteins. The proteome identification results obtained by LC/MALDI are compared to the gel electrophoresis/MS method as well as the shotgun proteomics method using 2D LC/electrospray ionization MS. It is demonstrated that, while LC/MALDI provides more extensive proteome coverage compared to the other two methods, these three methods are complementary to each other and a combination of these methods should provide a more comprehensive membrane proteome analysis.  相似文献   

3.
The capabilities of capillary isoelectric focusing-based multidimensional separations for performing proteome analysis from minute samples create new opportunities in the pursuit of biomarker discovery using enriched and selected cell populations procured from tissue specimens. In this article, recent advances in online integration of capillary isoelectric focusing with nano-reversed phase liquid chromatography for achieving high-resolution peptide and protein separations prior to mass spectrometry analysis are reviewed, along with its potential application to tissue proteomics. These proteome technological advances combined with recently developed tissue microdissection techniques, provide powerful tools for those seeking to gain a greater understanding at the global level of the cellular machinery associated with human diseases such as cancer.  相似文献   

4.
We have identified and characterized the proteome of Sulfolobus solfataricus P2 using multidimensional liquid phase protein separations. Multidimensional liquid phase chromatography was performed using ion exchange chromatography in the first dimension, followed by reverse-phase chromatography using 500 microm i.d. poly(styrene-divinylbenzene) monoliths in the second dimension to separate soluble protein lysates from S. solfataricus. The 2DLC protein separations from S. solfataricus protein lysates enabled the generation of a 2D liquid phase map analogous to the traditional 2DE map. Following separation of the proteins in the second dimension, fractions were collected, digested in solution using trypsin and analyzed using mass spectrometry. These approaches offer significant reductions in labor intensity and the overall time taken to analyze the proteome in comparison to 2DE, taking advantage of automation and fraction collection associated with this approach. Furthermore, following proteomic analysis using 2DLC, the data obtained was compared to previous 2DE and shotgun proteomic studies of a soluble protein lysate from S. solfataricus. In comparison to 2DE, the results show an overall increase in proteome coverage. Moreover, 2DLC showed increased coverage of a number of protein subsets including acidic, basic, low abundance and small molecular weight proteins in comparison to 2DE. In comparison to shotgun studies, an increase in proteome coverage was also observed. Furthermore, 187 unique proteins were identified using 2DLC, demonstrating this methodology as an alternative approach for proteomic studies or in combination with 2DE and shotgun workflows for global proteomics.  相似文献   

5.
The capabilities of capillary isoelectric focusing-based multidimensional separations for performing proteome analysis from minute samples create new opportunities in the pursuit of biomarker discovery using enriched and selected cell populations procured from tissue specimens. In this article, recent advances in online integration of capillary isoelectric focusing with nano-reversed phase liquid chromatography for achieving high-resolution peptide and protein separations prior to mass spectrometry analysis are reviewed, along with its potential application to tissue proteomics. These proteome technological advances combined with recently developed tissue microdissection techniques, provide powerful tools for those seeking to gain a greater understanding at the global level of the cellular machinery associated with human diseases such as cancer.  相似文献   

6.
Haynes PA  Roberts TH 《Proteomics》2007,7(16):2963-2975
In this review we examine the current state of analytical methods used for shotgun proteomics experiments in plants. The rapid advances in this field in recent years are discussed, and contrasted with experiments performed using current widely used procedures. We also examine the use of subcellular fractionation approaches as they apply to plant proteomics, and discuss how appropriate sample preparation can produce a great increase in proteome coverage in subsequent analysis. We conclude that the conjunction of these two techniques represents a significant advance in plant proteomics, and the future of plant biology research will continue to be enriched by the ongoing development of proteomic analytical technology.  相似文献   

7.
Proteomics is very much a technology-driven field. The ambition is to identify, quantify and to assess the state of posttranslational modification and interaction partners for every protein in the cell. The proteome is in a state of flux and is thus extremely complex. Analysis of the proteome is exacerbated by the huge dynamic concentration range of proteins in the cellular environment. The impact that mass spectrometry-based proteomics has had on the field of biology has heavily depended on dramatic improvements in mass spectrometry that have been made in recent years. We examined 1541 reports indexed in PubMed relating to proteomics and reproduction to identify trends in the field and to make some broad observations for future work. To set the scene, in the first part of the report, we give a comprehensive overview of proteomics and associated techniques and technologies (such as separations and mass spectrometry). The second part examines the field in light of these techniques and suggests some opportunities for application of these tools in the area of reproduction.  相似文献   

8.
In mass spectrometry (MS)-based bottom-up proteomics, protease digestion plays an essential role in profiling both proteome sequences and post-translational modifications (PTMs). Trypsin is the gold standard in digesting intact proteins into small-size peptides, which are more suitable for high-performance liquid chromatography (HPLC) separation and tandem MS (MS/MS) characterization. However, protein sequences lacking Lys and Arg cannot be cleaved by trypsin and may be missed in conventional proteomic analysis. Proteases with cleavage sites complementary to trypsin are widely applied in proteomic analysis to greatly improve the coverage of proteome sequences and PTM sites. In this review, we survey the common and newly emerging proteases used in proteomics analysis mainly in the last 5 years, focusing on their unique cleavage features and specific proteomics applications such as missing protein characterization, new PTM discovery, and de novo sequencing. In addition, we summarize the applications of proteases in structural proteomics and protein function analysis in recent years. Finally, we discuss the future development directions of new proteases and applications in proteomics.  相似文献   

9.
The field of single-cell omics is rapidly progressing. Although DNA and RNA sequencing-based methods have dominated the field to date, global proteome profiling has also entered the main stage. Single-cell proteomics was facilitated by advancements in different aspects of mass spectrometry (MS)-based proteomics, such as instrument design, sample preparation, chromatography and ion mobility. Single-cell proteomics by mass spectrometry (scp-MS) has moved beyond being a mere technical development, and is now able to deliver actual biological application and has been successfully applied to characterize different cell states. Here, we review some key developments of scp-MS, provide a background to the field, discuss the various available methods and foresee possible future directions.  相似文献   

10.
Ideally, shotgun proteomics would facilitate the identification of an entire proteome with 100% protein sequence coverage. In reality, the large dynamic range and complexity of cellular proteomes results in oversampling of abundant proteins, while peptides from low abundance proteins are undersampled or remain undetected. We tested the proteome equalization technology, ProteoMiner, in conjunction with Multidimensional Protein Identification Technology (MudPIT) to determine how the equalization of protein dynamic range could improve shotgun proteomics methods for the analysis of cellular proteomes. Our results suggest low abundance protein identifications were improved by two mechanisms: (1) depletion of high abundance proteins freed ion trap sampling space usually occupied by high abundance peptides and (2) enrichment of low abundance proteins increased the probability of sampling their corresponding more abundant peptides. Both mechanisms also contributed to dramatic increases in the quantity of peptides identified and the quality of MS/MS spectra acquired due to increases in precursor intensity of peptides from low abundance proteins. From our large data set of identified proteins, we categorized the dominant physicochemical factors that facilitate proteome equalization with a hexapeptide library. These results illustrate that equalization of the dynamic range of the cellular proteome is a promising methodology to improve low abundance protein identification confidence, reproducibility, and sequence coverage in shotgun proteomics experiments, opening a new avenue of research for improving proteome coverage.  相似文献   

11.
Recent advances in proteomics technologies provide tremendous opportunities for biomarker-related clinical applications; however, the distinctive characteristics of human biofluids such as the high dynamic range in protein abundances and extreme complexity of the proteomes present tremendous challenges. In this review we summarize recent advances in LC-MS-based proteomics profiling and its applications in clinical proteomics as well as discuss the major challenges associated with implementing these technologies for more effective candidate biomarker discovery. Developments in immunoaffinity depletion and various fractionation approaches in combination with substantial improvements in LC-MS platforms have enabled the plasma proteome to be profiled with considerably greater dynamic range of coverage, allowing many proteins at low ng/ml levels to be confidently identified. Despite these significant advances and efforts, major challenges associated with the dynamic range of measurements and extent of proteome coverage, confidence of peptide/protein identifications, quantitation accuracy, analysis throughput, and the robustness of present instrumentation must be addressed before a proteomics profiling platform suitable for efficient clinical applications can be routinely implemented.  相似文献   

12.
A variety of quantitative proteomics methods have been developed, including label-free, metabolic labeling, and isobaric chemical labeling using iTRAQ or TMT. Here, these methods were compared in terms of the depth of proteome coverage, quantification accuracy, precision, and reproducibility using a high-performance hybrid mass spectrometer, LTQ Orbitrap Velos. Our results show that (1) the spectral counting method provides the deepest proteome coverage for identification, but its quantification performance is worse than labeling-based approaches, especially the quantification reproducibility; (2) metabolic labeling and isobaric chemical labeling are capable of accurate, precise, and reproducible quantification and provide deep proteome coverage for quantification; isobaric chemical labeling surpasses metabolic labeling in terms of quantification precision and reproducibility; and (3) iTRAQ and TMT perform similarly in all aspects compared in the current study using a CID-HCD dual scan configuration. On the basis of the unique advantages of each method, we provide guidance for selection of the appropriate method for a quantitative proteomics study.  相似文献   

13.
With the emergence of mass spectrometry in protein science and the availability of complete genome sequences, proteomics has gone through a rapid development. The soil bacterium Bacillus subtilis, as one of the first DNA sequenced species, represents a model for Gram-positive bacteria and its proteome was extensively studied throughout the years. Having the final goal to elucidate how life really functions, one basic requirement is to know the entirety of cellular proteins. This review presents how far we have got in unraveling the proteome of B. subtilis. The application of gel-based and gel-free technologies, the analyses of different subcellular proteome fractions, and the pursuance of various physiological strategies resulted in a coverage of more than one-third of B. subtilis theoretical proteome.  相似文献   

14.
ABSTRACT

Introduction: The last decade has yielded significant developments in the field of proteomics, especially in mass spectrometry (MS) and data analysis tools. In particular, a shift from gel-based to MS-based proteomics has been observed, thereby providing a platform with which to construct proteome atlases for all life forms. Nevertheless, the analysis of plant proteomes, especially those of samples that contain high-abundance proteins (HAPs), such as soybean seeds, remains challenging.

Areas covered: Here, we review recent progress in soybean seed proteomics and highlight advances in HAPs depletion methods and peptide pre-fractionation, identification, and quantification methods. We also suggest a pipeline for future proteomic analysis, in order to increase the dynamic coverage of the soybean seed proteome.

Expert opinion: Because HAPs limit the dynamic resolution of the soybean seed proteome, the depletion of HAPs is a prerequisite of high-throughput proteome analysis, and owing to the use of two-dimensional gel electrophoresis-based proteomic approaches, few soybean seed proteins have been identified or characterized. Recent advances in proteomic technologies, which have significantly increased the proteome coverage of other plants, could be used to overcome the current complexity and limitation of soybean seed proteomics.  相似文献   

15.
Gel electrophoresis had been the primary method in proteomics. In the early era of proteomics, gel electrophoresis was a dominant technique of sample preparation for mass spectrometry analysis. Particularly, two-dimensional electrophoresis provided high-resolution proteome separation, and was regarded as the standard methodology for the separation of wide-range proteomes. However, gel electrophoresis turned downwards due to the progress of other separations including liquid chromatography and ionization techniques, resulting gel-free proteomics finally becoming dominant players at present. There are numerous advantages in gel-free approach in aspects of current trends of disease research. Interestingly, gel-free approaches are still advanced, it seems that gel electrophoresis will not be disappeared. The unique features of gel electrophoresis can be complementary for gel-free and it is suitable for the new wave of top-down functional proteomics.  相似文献   

16.
17.
Orthogonal high-resolution separations are critical for attaining improved analytical dynamic range and protein coverage in proteomic measurements. High-pH reversed-phase liquid chromatography (RPLC), followed by fraction concatenation, affords better peptide analysis than conventional strong cation-exchange chromatography applied for 2D proteomic analysis. For example, concatenated high-pH RPLC increased identification of peptides (by 1.8-fold) and proteins (by 1.6-fold) in shotgun proteomics analyses of a digested human protein sample. Additional advantages of high-pH RPLC with fraction concatenation include improved protein sequence coverage, simplified sample processing and reduced sample losses, making this an attractive alternative to strong cation-exchange chromatography in conjunction with second-dimension low-pH RPLC for 2D proteomics analyses.  相似文献   

18.
Understanding how proteins and their complex interaction networks convert the genomic information into a dynamic living organism is a fundamental challenge in biological sciences. As an important step towards understanding the systems biology of a complex eukaryote, we cataloged 63% of the predicted Drosophila melanogaster proteome by detecting 9,124 proteins from 498,000 redundant and 72,281 distinct peptide identifications. This unprecedented high proteome coverage for a complex eukaryote was achieved by combining sample diversity, multidimensional biochemical fractionation and analysis-driven experimentation feedback loops, whereby data collection is guided by statistical analysis of prior data. We show that high-quality proteomics data provide crucial information to amend genome annotation and to confirm many predicted gene models. We also present experimentally identified proteotypic peptides matching approximately 50% of D. melanogaster gene models. This library of proteotypic peptides should enable fast, targeted and quantitative proteomic studies to elucidate the systems biology of this model organism.  相似文献   

19.
Differential detergent fractionation (DDF), which relies on detergents to sequentially extract proteins from eukaryotic cells, has been used to increase proteome coverage of 2D-PAGE. Here, we used DDF extraction in conjunction with the nonelectrophoretic proteomics method of liquid chromatography and electrospray ionization tandem mass spectrometry. We demonstrate that DDF can be used with 2D-LC ESI MS2 for comprehensive cellular proteomics, including a large proportion of membrane proteins. Compared to some published methods designed to isolate membrane proteins specifically, DDF extraction yields comprehensive proteomes which include twice as many membrane proteins. Two-thirds of these membrane proteins have more than one trans-membrane domain. Since DDF separates proteins based upon their physicochemistry and subcellular localization, this method also provides data useful for functional genome annotation. As more genome sequences are completed, methods which can aid in functional annotation will become increasingly important.  相似文献   

20.
Human plasma is a rich source of biomedical information and biomarkers. However, the enormous dynamic range of plasma proteins limits its accessibility to mass spectrometric (MS) analysis. Here, we show that enrichment of extracellular vesicles (EVs) by ultracentrifugation increases plasma proteome depth by an order of magnitude. With this approach, more than two thousand proteins are routinely and reproducibly quantified by label-free quantification and data independent acquisition (DIA) in single-shot liquid chromatography tandem mass spectrometry runs of less than one hour. We present an optimized plasma proteomics workflow that enables high-throughput with very short chromatographic gradients analyzing hundred samples per day with deep proteome coverage, especially when including a study-specific spectral library generated by repeated injection and gas-phase fractionation of pooled samples. Finally, we test the workflow on clinical biobank samples from malignant melanoma patients in immunotherapy to demonstrate the improved proteome coverage supporting the potential for future biomarker discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号