首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of felodipine on renal hemodynamics and excretion were evaluated in the anesthetized dog. Unilateral renal arterial infusion of felodipine produced ipsilateral increases in the absolute and fractional excretion of sodium and water which were greater than those of potassium; these effects occurred in the absence of changes in mean arterial pressure, renal blood flow, or glomerular filtration rate. There were no significant effects on renal hemodynamic or excretory function in the contralateral kidney. The unilateral renal arterial infusion of isotonic saline or vehicle produced no significant effects on renal hemodynamic or excretory function in either ipsilateral or contralateral kidney. Felodipine, a calcium antagonist with vasodilator antihypertensive properties, in doses which do not affect systemic or renal hemodynamics in the dog, increased urinary flow rate and sodium excretion by decreasing renal tubular water and sodium reabsorption. As a vasodilator antihypertensive agent, felodipine possesses potentially advantageous diuretic and natriuretic properties.  相似文献   

2.
Circadian rhythms in urinary water, sodium, potassium and proteins excretion are studied in 45 rats living alone in metabolism cages. Urines are collected during 4 consecutive 6 hours long periods during 2 consecutive days. Large circadian variations of these parameters (especially water and proteins excretion and urinary protein concentration) are described. The influence of feeding rhythms on the circadian urinary excretion rhythms is discussed. It is proposed that nightly renal hemodynamic changes (during meal digestion or with high renin plasma levels) can induce modifications in glomerular filtration rate and electrolytes and macromolecules transglomerular flow.  相似文献   

3.
Under steady-state conditions, urinary sodium excretion matches dietary sodium intake. Because extracellular fluid osmolality is tightly regulated, the quantity of sodium in the extracellular fluid determines the volume of this compartment. The left atrial volume receptor mechanism is an example of a neural mechanism of volume regulation. The left atrial mechanoreceptor, which functions as a sensor in the low-pressure vascular system, is located in the left atrial wall, which has a well-defined compliance relating intravascular volume to filling pressure. The left atrial mechanoreceptor responds to changes in wall left atrial tension by discharging into afferent vagal fibers. These fibers have suitable central nervous system representation whose related efferent neurohumoral mechanisms regulate thirst, renal excretion of water and sodium, and redistribution of the extracellular fluid volume. Efferent renal sympathetic nerve activity undergoes appropriate changes to facilitate renal sodium excretion during sodium surfeit and to facilitate renal sodium conservation during sodium deficit. By interacting with other important determinants of renal sodium excretion (e.g., renal arterial pressure), changes in efferent renal sympathetic nerve activity can significantly modulate the final renal sodium excretion response with important consequences in pathophysiological states (e.g., hypertension, edema-forming states).  相似文献   

4.
Water and electrolyte excretion after a large water load and a small Na load was studied in a group of healthy volunteers (C) and in patients with renal arterial stenosis (S) and essential hypertension (EH). It was found that both groups of hypertensive patients reacted to this stimulus by higher Na, Cl, Ca and Mg excretion tan group C. In the two hypertension groups, cumulative Na excretion was comparable in size, but cumulative water excretion was significantly greater in group EH than in group S. The results indicate that these differences can be attributed to different localization of reduced Na reabsorption in the nephron. Signs of a decrease in Na resorption were found in the distal part of the nephron in both hypertension groups, but in the EH group they were also found in the proximal part.  相似文献   

5.
The control of renal medullary perfusion and the impact of alterations in medullary blood flow on renal function have been topics of research interest for almost four decades. Many studies have examined the vascular architecture of the renal medulla, the factors that regulate renal medullary blood flow, and the influence of medullary perfusion on sodium and water excretion and arterial pressure. Despite these studies, there are still a number of important unanswered questions in regard to the control of medullary perfusion and the influence of medullary blood flow on renal excretory function and blood pressure. This review will first address the vascular architecture of the renal medulla and the potential mechanisms whereby medullary perfusion may be regulated. The known extrarenal and local systems that influence the medullary vasculature will then be summarized. Finally, this review will present an overview of the evidence supporting the concept that selective changes in medullary perfusion can have a potent influence on sodium and water excretion with a long-term influence on arterial blood pressure regulation.  相似文献   

6.
The carotid chemoreceptors of narcotized, vagotomized and spontaneously breathing hydropenic cats in hypertonic mannite diuresis were stimulated by perfusion with venous blood penic cats in hypertonic mannite diuresis were stimulated by perfusion with venous blood for 70 min. Elevation of blood pressure at the innervated kidneys was prevented by an automatically controlled balloon located within the aorta. Stimulation of the chemoreceptors intensified respiration and raised the arterial systemic pressure. With the renal arteries at constant pressure, the effective renal plasma flow and the glomerular filtration rate significantly declined. The filtration fraction remained unchanged. The absolute urinary and sodium excretion did not change significantly, whereas the fractional time-volume, fractional sodium excretion, and the fractional osmotic excretion significantly increased. The fractional tubular reabsorption of osmotically free water was significantly enhanced. These reactions subsided during subsequent perfusion of the glomerula carotici with arterial blood. The results suggest that tubular sodium reabsorption is inhibited by stimulation of the carotid chemoreceptors, although re-adjustment of renal perfusion and filtrate volume cannot be excluded.  相似文献   

7.
Cardiopulmonary stretch receptors have been implicated as part of a reflex mechanism linking changes in blood volume to changes in renal excretion. Experiments were performed to determine whether total denervation of these receptors by combined cervical vagotomy and thoracic sympathectomy affects the renal responses of the monkey to head-out water immersion, a maneuver that translocates blood to the thorax and elicits an increase in renal salt and water excretion. Macaca fascicularis monkeys first underwent chronic bilateral thoracic sympathectomy or sham denervation performed in two stages a week apart. One to two weeks later, they were anesthetized with pentobarbital sodium, and the sympathectomized animals underwent bilateral cervical vagotomy. Control renal function did not differ between the two groups. Immersion of 90-min duration increased central venous and mean arterial pressures by similar amounts in both groups, but heart rate increased only in the sham-denervated animals. Denervation did not affect the magnitudes or delay the times of onset of the increases in urine flow, absolute and fractional sodium excretion, and osmolar and free water clearances occurring with immersion. These results demonstrate that in the anesthetized monkey cardiopulmonary receptors are not necessary for eliciting the renal responses to immersion.  相似文献   

8.
This study evaluated the effect of oral crude Vernonia polyanthes Less. hydroalcoholic extract administration (CHE, 0.5 and 1.0 g/kg body wt., daily for 7 days) on arterial blood pressure and renal sodium excretion in conscious rats. CHE administration decreased arterial blood pressure dose-dependently followed by a significant rise in creatinine clearance and a fall in fractional post-proximal sodium excretion was compared to the control group. These results suggest that blood pressure decrease induced by the oral crude Vernonia hydroalcoholic extract may be blunted by reduction of the post-proximal renal sodium excretion. Thus, the present study shows that Vernonia extract is a potential vasodilatation agent in normotensive rats without any effects on renal tubule autoregulation mechanisms.  相似文献   

9.
Experiments were conducted to assess the effect of furosemide or amiloride alone and a combination of both agents on each kidney in anesthetized 2-kidney, 1 clip Goldblatt hypertensive rats (n = 25). Intravenous infusion of furosemide alone (1.02 mg/kg.hr) significantly reduced the blood pressure by 14 +/- 5 mmHg. There were 6- to 10-fold increases in water, absolute sodium and fractional sodium excretions and a 2-fold increase in potassium excretion in the nonclipped kidney. A smaller but significant increase in the excretory function was also observed in the clipped kidney. There was no significant change in GFR of both kidneys. Indomethacin pretreatment (2 mg/kg) failed to significantly alter the vasodepressor and renal responses to furosemide in both hypertensive and normal rats. Removal of the renal artery clip from the hypertensive rats reduced the blood pressure by 12 +/- 3 mmHg and enhanced the function of the ipsilateral, unclipped kidney. Subsequent administration of furosemide further increased the excretory response. Administration of amiloride alone (2.4 mg/kg.hr) or with furosemide into hypertensive rats reduced the arterial pressure and increased excretion rates of urine flow and urinary sodium. Potassium excretion rate decreased bilaterally in amiloride treated rats but did not alter significantly in rats which received a combination of amiloride and furosemide. These results indicate that diuretics ameliorate the excretory function of both the stenotic kidney and the nonstenotic kidney and that the improvement of the kidney function is independent of prostaglandin. Furthermore, removal of the stenosis accentuates the beneficial effect of diuretics on the kidney.  相似文献   

10.
Circadian changes in renal hemodynamics and urinary glycosaminogly-can (GAG) excretion were studied in normal Sprague-Dawley rats to further investigate rhythms in kidney function. Urinary water, protein, and GAG excretion, as well as glomerular filtration rate (GFR) and renal plasma flow (RPF), were determined every 4h over the 24h cycle in an attempt to characterize any temporal changes. Urinary flow rate and proteinuria peaked during the dark activity period of the animals, consistently at the same hour, whereas the lowest values were detected during the resting phase. GAG are mucopolysaccharides entering the constitution of the glomerular basement membrane (GBM), which is the key component in the process of glomerular filtration. Similarly, the urinary excretion rate of GAG showed a circadian rhythmicity in phase with urinary water and protein excretion, with markedly increased values observed during the nocturnal phase of the animals. Moreover, GFR and RPF were demonstrated to exhibit large circadian variations in phase with renal excretory rhythmicity, showing nighttime values significantly greater compared to daytime ones. Strong correlations were found between GFR and RPF rhythms, as well as between GAG and GFR, and GAG and RPF rhythms, although the latter were not statistically significant. This pattern suggests that the circadian rhythmicity in urinary excretion rate of GAG in physiological conditions could presumably be secondary to the temporal changes in renal hemodynamics. In this respect, knowledge of renal chronobiology helpfully contributes to increase our understanding of renal physiology.  相似文献   

11.
Regulation of arterial pressure: role of pressure natriuresis and diuresis   总被引:2,自引:0,他引:2  
The importance of the renal pressure natriuresis and diuresis mechanisms in long-term control of body fluid volumes and arterial pressure has been controversial and difficult to quantitate experimentally. Recent studies, however, have demonstrated that in several forms of chronic hypertension caused by aldosterone, angiotensin II (AngII), vasopressin, or norepinephrine and adrenocorticotropin, increased renal arterial pressure is essential for maintaining normal excretion of sodium and water in the face of reduced renal excretory capability. When renal arterial pressure was servo-controlled in these models of hypertension, sodium and water retention continued unabated, causing ascites, pulmonary edema, or even complete circulatory collapse within a few days. Apparently, other mechanisms for volume homeostasis, such as the various natriuretic and diuretic factors that have been postulated, are not sufficiently powerful to maintain fluid balance in the absence of increased renal arterial pressure when renal excretory function is reduced in these forms of hypertension. The intrarenal mechanisms responsible for pressure natriuresis and diuresis are not entirely clear, but they seem to involve small increases in glomerular filtration rate and filtered load as well as reductions in fractional reabsorption in proximal and distal tubules. During chronic disturbances of arterial pressure additional factors, especially changes in AngII and aldosterone formation, act to amplify the effectiveness of the basic renal pressure natriuresis and diuresis mechanisms in regulating arterial pressure and body fluid volumes.  相似文献   

12.
Heme oxygenase (HO) catalyzes the degradation of heme to form iron, biliverdin, and carbon monoxide (CO). The vascular actions of CO include direct vasodilation of vascular smooth muscle and indirect vasoconstriction through inhibition of nitric oxide synthase (NOS). This study was performed to examine the effects in the kidney of inhibition of heme oxygenase alone or combined with NOS inhibition. Chromium mesoporphyrin (CrMP; 45 μmol/kg ip), a photostable HO inhibitor, was given to control rats and N(G)-nitro-l-arginine methyl ester (l-NAME)-treated hypertensive rats (50 mg·kg?1·day?1), 12 h, 4 days). In control animals, CrMP decreased CO levels, renal HO-1 levels, urine volume, and sodium excretion, but had no effect on arterial pressure, renal blood flow (RBF), plasma renin activity (PRA), or glomerular filtration rate (GFR). In l-NAME-treated hypertensive rats, CrMP decreased endogenous CO and renal HO-1 levels and had no effect on arterial pressure, RBF, or GFR but decreased sodium and water excretion in a similar manner to control animals. An increase in PRA was observed in untreated rats but not in l-NAME-infused rats, indicating that this effect is associated with an absent NO system. The results suggest that inhibition of HO promotes water and sodium excretion by a direct tubular action that is independent of renal hemodynamics or the NO system.  相似文献   

13.
M S Melis 《Phytomedicine》1999,6(4):247-250
To evaluate the effect of crude extract of Stevia rebaudiana on renal water, Na+ and K+ excretion, male Wistar rats (250-350 g each) under antidiuresis or water diuresis conditions, were evaluated. During intravenous infusion of the extract (0.05 mg/min/100 g) no significant differences were detected in mean arterial pressure or renal hemodynamics parameters. In contrast, fractional water and sodium excretion and solute clearance increased significantly, in both groups of animals. In antidiuresis rats the extract significantly increased reabsorption of water by the collecting duct and in water diuresis animals the extract significantly increased free water clearance. The data suggest preferential action of the extract in the proximal tubular cells involved with salt transport mechanism.  相似文献   

14.
Aldosterone has been recognized as an important sodium retaining hormone for many years. Recently we have demonstrated that angiotensin II has a much more powerful antinatriuretic effect than that of aldosterone. The importance of angiotensin II in regulation of sodium excretion has been observed in experiments in which angiotensin II has been infused intravenously or into the renal artery in acute and chronic situations, and in studies involving blockade of angiotensin II formation. In other experiments we have studied the effects of changes in renal perfusion pressure on sodium excretion. While earlier work by others indicated that an acute 10 mm Hg increase in perfusion pressure would increase sodium excretion 60%-70% we observed that a chronic 10 mm Hg change in perfusion pressure would result in a 300% change in sodium excretion. In view of evidence suggesting that changes in the ability of the kidney to excrete sodium normally at normal arterial pressure is an important element in hypertension we studied the effects of aldosterone and angiotensin II on arterial pressure regulation in normal dogs. High physiological levels of each hormone were infused intravenously for several weeks. Both produced sustained hypertension. Aldosterone hypertension was a typical volume loading type with sodium retention, increased blood volume and extracellular fluid volume and a slow rise in arterial pressure. Angiotensin hypertension was a typical vasoconstrictor type with high peripheral resistance, normal or decreased blood volume, decreased cardiac output, a rapid rise in arterial pressure and only initial sodium retention.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Regulation of sodium excretion by renal interstitial hydrostatic pressure   总被引:1,自引:0,他引:1  
Renal interstitial hydrostatic pressure (RIHP) appears to play a crucial role in linking the renal circulation to the rate of tubular reabsorption of sodium and water. Various physiological and pharmacological maneuvers that increase RIHP are associated with increases in sodium excretion. Renal vasodilators that increase RIHP also increase sodium excretion, whereas the vasodilators that do not alter RIHP do not affect sodium excretion. Preventing increases in RIHP during intrarenal infusion of vasodilators markedly attenuates the normal increase in sodium and water excretion. Techniques that directly increase RIHP by renal interstitial volume expansion increase urinary excretion of sodium and water. RIHP may be an important mediator of renal perfusion pressure (RPP) natriuresis. Experimental evidence suggests that the proximal tubule of deep nephrons may be an important nephron site that is sensitive to changes in RPP.  相似文献   

16.
《Life sciences》1995,56(14):PL243-PL248
Central administration of the selective mu opioid agonist, dermorphin, produces a concurrent diuretic and antinatriuretic response in conscious rats. To determine whether central mu opioids differentially affect the renal excretion of water and sodium, we examined changes in renal function produced by intracerebroventricular (i.c.v.) administration of dermorphin during continuous intravenous (i.v.) infusion of a synthetic ADH analogue in conscious Sprague-Dawley rats. During ADH infusion the typical diuresis produced by i.c.v. dermorphin was abolished although the antinatriuresis remained intact. Alone, I.v. ADH produced a decrease in urine flow rate without significantly altering urinary sodium excretion. In other studies, the effects of i.c.v. dermorphin were examined on the renal responses produced by i.v. infusion of a V2-ADH receptor antagonist. In these studies the magnitude of the V2 antagonist-induced diuresis was not altered by i.c.v. dermorphin but the increase in urinary sodium excretion produced by this antagonist was converted to an antinatriuresis. Central dermorphin did not alter heart rate or mean arterial pressure in either study. These findings suggest that the effects of central dermorphin on renal sodium and water handling are mediated by separate mechanisms; the effects on water involving changes in circulating ADH levels and the effects on sodium independent of the action of this hormone.  相似文献   

17.
Previous studies have shown that intrahepatic adenosine is involved in activation of the hepatorenal reflex that regulates renal sodium and water excretion. The present study aims to determine which subtype of adenosine receptors is implicated in the process. Mean arterial pressure, portal venous pressure and flow, and renal arterial flow were monitored in pentobarbital anesthetized rats. Urine was collected from the bladder. Intraportal administration of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective adenosine A1 receptor antagonist, increased urine flow by 24%, 89%, and 143% at the dose of 0.01, 0.03, and 0.1 mg x kg(-1), respectively; in contrast, DPCPX, when administered intravenously at the same doses, only increased urine flow by 0%, 18%, and 36%. The increases in urine flow induced by intraportal administration of DPCPX were abolished in rats with liver denervation. Intrahepatic infusion of adenosine significantly decreased urine flow and this response was abolished by intraportal administration of DPCPX. Neither intraportal nor intravenous administration of 3,7-dimethyl-1-propargylxanthine, a selective adenosine A2 receptor antagonist, showed significant influence on urine flow. Systemic arterial pressure, renal blood flow and glomerular filtration rate were unaltered by the administration of any of the drugs. In conclusion, intrahepatic adenosine A1 receptors are responsible for the adenosine-mediated hepatorenal reflex that regulates renal water and sodium excretion.  相似文献   

18.
W. Waldh  usl  H. Haydl  H. Frischauf 《Steroids》1972,20(6):727-736
A method for the determination of urinary aldosterone has been developed which appears to be applicable for the clinical laboratory. Ten ml of urine were used for analysis. The purification of aldosterone consisted of hydrolysis at pH 1.0; CH2Cl2 extraction and column chromatography on Sephadex LH-20. Recovery of added 4-14C-D-aldosterone was 44.7 + 7.1 (2 SD) % for 60 experiments. The extraction was followed by a rapid radioimmunoassay analysis of aldosterone. The sensitivity of the overall assay was 1.6 μg aldosterone, the accuracy 92.0 ±3.4 %. The coefficient of variation was within one assay 14 % for a given sample (n = 19) and 20 % for multiple assays. Excretion of aldosterone as determined in 17 healthy individuals on an uncontrolled diet was 9.5 ± 3.6 (SD) μg per 24 hours. Patients suffering from renal arterial stenosis or from essential hypertension presented an increase of aldosterone excretion upon sodium restriction. An increased excretion of aldosterone without any response to reduced sodium uptake was found in patients with primary aldosteronism.  相似文献   

19.
The effects of streptozotocin induced diabetes (50 mg/Kg) on the circadian rhythms in the excretion of sodium and potassium as well as their plasma concentration rhythms were investigated. Control (C) and diabetic (D) rats were studied during a light-dark (12h:12h) cycle and fed ad libitum. Statistically significant circadian rhythms were found for sodium and potassium excretion in C rats. The orthophases of both rhythms occurred in the dark phase, the potassium one occurring before that of sodium. In D rats there is increased excretion of both sodium and potassium with the rhythmicity maintained for sodium excretion only, which has an earlier orthophase than in the C rats. Plasma sodium and potassium concentrations showed a statistically significant circadian pattern in C rats, with orthophase in the light phase. This rhythmicity only appears in plasma potassium concentration for D rats, with orthophase at the end of the dark phase. The results in diabetic rats may suggest that the glomerular filtration rate (GFR) and/or tubular reabsorption rhythms are still contributing to the sodium excretory rhythm, and that the loss of the circadian rhythm in sodium plasma concentration has no influence on the sodium excretion rhythm. Nevertheless, the loss of the potassium excretion rhythm may suggest a disruption of the variations in the secretory process, as this excretion seems to be independent of the plasma potassium concentration rhythm, which is not lost in D rats.  相似文献   

20.
The effects of streptozotocin induced diabetes (50 mg/Kg) on the circadian rhythms in the excretion of sodium and potassium as well as their plasma concentration rhythms were investigated. Control (C) and diabetic (D) rats were studied during a light-dark (12h:12h) cycle and fed ad libitum. Statistically significant circadian rhythms were found for sodium and potassium excretion in C rats. The orthophases of both rhythms occurred in the dark phase, the potassium one occurring before that of sodium. In D rats there is increased excretion of both sodium and potassium with the rhythmicity maintained for sodium excretion only, which has an earlier orthophase than in the C rats. Plasma sodium and potassium concentrations showed a statistically significant circadian pattern in C rats, with orthophase in the light phase. This rhythmicity only appears in plasma potassium concentration for D rats, with orthophase at the end of the dark phase. The results in diabetic rats may suggest that the glomerular filtration rate (GFR) and/or tubular reabsorption rhythms are still contributing to the sodium excretory rhythm, and that the loss of the circadian rhythm in sodium plasma concentration has no influence on the sodium excretion rhythm. Nevertheless, the loss of the potassium excretion rhythm may suggest a disruption of the variations in the secretory process, as this excretion seems to be independent of the plasma potassium concentration rhythm, which is not lost in D rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号