首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
H. M. Bomze  A. J. Lopez 《Genetics》1994,136(3):965-977
In Drosophila melanogaster, alternatively spliced mRNAs from the homeotic gene Ultrabithorax (Ubx) encode a family of structurally distinct homeoprotein isoforms. The developmentally regulated expression patterns of these isoforms suggest that they have specialized stage- and tissue-specific functions. To evaluate the functional importance of UBX isoform diversity and gain clues to the mechanism that regulates processing of Ubx RNAs, we have investigated whether the Ubx RNAs of other insects undergo similar alternative splicing. We have isolated and characterized Ubx cDNA fragments from D. melanogaster, Drosophila pseudoobscura, Drosophila hydei and Drosophila virilis, species separated by as much as 60 million years of evolution, and have found that three aspects of Ubx RNA processing have been conserved. (1) These four species exhibit identical patterns of optional exon use in a region adjacent to the homeodomain. (2) These four species produce the same family of UBX protein isoforms with identical amino acid sequences in the optional exons, even though the common amino-proximal region has undergone substantial divergence. The nucleotide sequences of the optional exons, including third positions of rare codons, have also been conserved strongly, suggesting functional constraints that are not limited to coding potential. (3) The tissue- and stage-specific patterns of expression of different UBX isoforms are identical among these Drosophila species, indicating that the developmental regulation of the alternative splicing events has also been conserved. These findings argue for an important role of alternative splicing in Ubx function. We discuss the implications of these results for models of UBX protein function and the mechanism of alternative splicing.  相似文献   

3.
4.
Although most metazoan genes undergo alternative splicing, the functional relevance of the majority of alternative splicing products is still unknown. Here we explore this problem in the Drosophila Hox gene Ultrabithorax (Ubx). Ubx produces a family of six protein isoforms through alternative splicing. To investigate the functional specificity of the Ubx isoforms, we studied their role during the formation of the Drosophila halteres, small dorsal appendages that are essential for normal flight. Our work shows that isoform Ia, which is encoded by all Ubx exons, is more efficient than isoform IVa, which lacks the amino acids coded by two small exons, in controlling haltere development and regulating Ubx downstream targets. However, our experiments also demonstrate that the functional differences among the Ubx isoforms can be compensated for by increasing the expression levels of the less efficient form. The analysis of the DNA-binding profiles of Ubx isoforms to a natural Ubx target, spalt, shows no major differences in isoform DNA-binding activities, suggesting that alternative splicing might primarily affect the regulatory capacity of the isoforms rather than their DNA-binding patterns. Our results suggest that to obtain distinct functional outputs during normal development genes must integrate the generation of qualitative differences by alternative splicing to quantitative processes affecting isoform protein expression levels.  相似文献   

5.
6.
7.
Maintenance of the "on-off" state of Drosophila homeotic genes in Antennapedia and bithorax complexes requires activities of the trithorax and Polycomb groups of genes. To identify cis-acting sequences for functional reconstruction of regulation by both trithorax and Polycomb, we examined the expression patterns of several Ubx-lacZ transgenes that carry upstream fragments corresponding to a region of approximately 50 kb. A 14.5-kb fragment from the postbithorax/bithoraxoid region of Ultrabithorax exhibited proper regulation by both trithorax and Polycomb in the embryonic central nervous system. Using a Drosophila haploid cell line for transient expression, we found that trithorax or Polycomb can function independently through this upstream fragment to activate or repress the Ultrabithorax promoter, respectively. Studies of deletion mutants of trithorax and Polycomb demonstrated that trithorax-dependent activation requires the central zinc-binding domain, while Polycomb-dependent repression requires the intact chromodomain. In addition, trithorax-dependent activity can be abrogated by increasing the amount of Polycomb, suggesting a competitive interaction between the products of trithorax and Polycomb. Deletion analysis of this fragment demonstrated that a 440-bp fragment contains response elements for both trithorax and Polycomb. Furthermore, we showed that the integrity of the proximal promoter region is essential for trithorax-dependent activation, implicating a long-range interaction for promoter activation.  相似文献   

8.
9.
10.
11.
In wild-type Drosophila melanogaster larvae, the Ultrabithorax (Ubx) gene is expressed in the haltere imaginal discs but not in the majority of cells of the wing imaginal discs. Ectopic expression of the Ubx gene in wing discs can be elicited by the presence of Contrabithorax (Cbx) gain-of-function alleles of the Ubx gene or by loss-of-function mutations in Polycomb (Pc) or in other trans-regulatory genes which behave as repressors of Ubx gene activity. Several Ubx loss-of-function alleles cause the absence of detectable Ubx proteins (UBX) or the presence of truncated UBX lacking the homeodomain. We have compared adult wing phenotypes with larval wing disc UBX patterns in genotypes involving double mutant chromosomes carrying in cis one of those Ubx mutations and the Cbx1 mutation. We show that such double mutant genes are (1) active in the same cells in which the single mutant Cbx1 is expressed, although they are unable to yield functional proteins, and (2) able to induce ectopic expression of a normal homologous Ubx allele in a part of the cells in which the single mutant Cbx1 is active. That induction is conditional upon pairing of the homologous chromosomes (the phenomenon known as transvection), and it is not mediated by UBX. Depletion of Pc gene products by Pc3 mutation strongly enhances the induction phenomenon, as shown by (1) the increase of the number of wing disc cells in which induction of the homologous allele is detectable, and (2) the induction of not only a paired normal allele but also an unpaired one.  相似文献   

12.
Functional dissection of Ultrabithorax proteins in D. melanogaster   总被引:37,自引:0,他引:37  
R S Mann  D S Hogness 《Cell》1990,60(4):597-610
Expression of Ultrabithorax (UBX) proteins via a heat-inducible promoter generated homeotic transformations of segmental identities in the embryonic cuticle and peripheral nervous system (PNS) of Drosophila and transformed antennae into legs in the adult. The embryonic transformations were used to determine the identity functions of members of the UBX family and UBX mutant forms. Whereas UBX forms I and IV each induced the cuticle transformations, only form I induced the PNS transformations. Analysis of the transformations generated by UBX deletions and by a chimeric Ultrabithorax-Antennapedia protein demonstrated that the majority of the UBX identity information is contained within the C-terminal, homeodomain-containing portion of the protein. Implications of these results for how homeotic proteins select particular metameric identities are discussed.  相似文献   

13.
14.
To investigate what role homeotic genes may play in morphological evolution, we are comparing homeotic gene expression in two very different insects, Drosophila (Diptera) and Schistocerca (Orthoptera). In this paper we describe a monoclonal antibody, FP6.87, that recognizes the products of both the Ultrabithorax (Ubx) and abdominal-A (abd-A) genes in Drosophila, via an epitope common to the carboxy terminal region of these two proteins. This antibody recognizes nuclear antigens present in the posterior thorax and abdomen of Schistocerca. We infer that it recognizes the Schistocerca homolog of UBX protein, and probably also of ABD-A. As the distribution of Schistocerca ABD-A protein is already known, we can use this reagent to map the expression of Schistocerca UBX in the thorax and anterior abdomen, where ABD-A is not expressed. Both the general domain, and many of the details, of UBX exp ression are remarkably conserved compared with Drosophila. Thus UBX expression extends back from T2 in the ectoderm (including the CNS), but only from A1 in the mesoderm. As noted for other bithorax complex genes in Schistocerca, expression begins in the abdomen, at or shortly before the time of segmentation. It only later spreads anteriorly to the thorax. For much of embryogene-sis, the expression of UBX in the thoracic epidermis is largely restricted to the T3 limb. Inthis limb, UBX is strikingly regulated, in a complex pattern that reflects limb segmentation. Reviewing these and earlier observations, we conclude that evolutionary changes affect both the precise regulation of homeotic genes within segments, and probably also the spectrum of downstream genes that respond to homeotic gene expression in a given tissue. Overall domains of homeotic gene expression appear to be well conserved between different insect groups, though a change in the extent and timing of homeotic gene expression may underlie the modification of the posterior abdomen in different insect groups. © 1994 Wiley-Liss, Inc.  相似文献   

15.
16.
K. McCall  M. B. O''Connor    W. Bender 《Genetics》1994,138(2):387-399
Eight P elements carrying a β-galactosidase (lacZ) reporter have been mapped to sites within the Drosophila bithorax complex. The bithorax complex contains three homeotic genes, and at least nine regulatory regions which control their expression in successive parasegments of the fly. The enhancer traps inserted at the promoter of one of the genes, Ultrabithorax, express lacZ in patterns which mimic the Ultrabithorax protein pattern. Enhancer traps in the regulatory regions do not mimic the endogenous genes, but express lacZ globally in the relevant parasegments. Some P elements carry large DNA fragments upstream of the lacZ promoter but internal to the P element. In cases where these internal sequences specify a lacZ pattern, that pattern is generally suppressed when the element is inserted in the bithorax complex. In embryos mutant for genes of the Polycomb group, the lacZ expression from the enhancer traps spreads to all segments. Thus, the enhancer traps reveal parasegmental domains that are maintained by Polycomb-mediated repression. Such domains may be realized by parasegmental differences in chromatin structure.  相似文献   

17.
18.
19.
20.
In Drosophila, the specific morphological characteristics of each segment are determined by the homeotic genes that regulate the expression of downstream target genes. We used a subtractive hybridization procedure to isolate activated target genes of the homeotic gene Ultrabithorax (Ubx). In addition, we constructed a set of mutant genotypes that measures the regulatory contribution of individual homeotic genes to a complex target gene expression pattern. Using these mutants, we demonstrate that homeotic genes can regulate target gene expression at the start of gastrulation, suggesting a previously unknown role for the homeotic genes at this early stage. We also show that, in abdominal segments, the levels of expression for two target genes increase in response to high levels of Ubx, demonstrating that the normal down-regulation of Ubx in these segments is functional. Finally, the DNA sequence of cDNAs for one of these genes predicts a protein that is similar to a human proto-oncogene involved in acute myeloid leukemias. These results illustrate potentially general rules about the homeotic control of target gene expression and suggest that subtractive hybridization can be used to isolate interesting homeotic target genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号